Mercurial > hg > ltpda
comparison m-toolbox/html_help/help/ug/ltpda_training_topic_2_6.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" | |
2 "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> | |
3 | |
4 <html lang="en"> | |
5 <head> | |
6 <meta name="generator" content= | |
7 "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> | |
8 <meta http-equiv="Content-Type" content= | |
9 "text/html; charset=us-ascii"> | |
10 | |
11 <title>Whitening noise (LTPDA Toolbox)</title> | |
12 <link rel="stylesheet" href="docstyle.css" type="text/css"> | |
13 <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> | |
14 <meta name="description" content= | |
15 "Presents an overview of the features, system requirements, and starting the toolbox."> | |
16 </head> | |
17 | |
18 <body> | |
19 <a name="top_of_page" id="top_of_page"></a> | |
20 | |
21 <p style="font-size:1px;"> </p> | |
22 | |
23 <table class="nav" summary="Navigation aid" border="0" width= | |
24 "100%" cellpadding="0" cellspacing="0"> | |
25 <tr> | |
26 <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> | |
27 | |
28 <td valign="baseline" align="right"><a href= | |
29 "ltpda_training_topic_2_5.html"><img src="b_prev.gif" border="0" align= | |
30 "bottom" alt="Remove trends from a time-series AO"></a> <a href= | |
31 "ltpda_training_topic_2_7.html"><img src="b_next.gif" border="0" align= | |
32 "bottom" alt="Select and find data from an AO"></a></td> | |
33 </tr> | |
34 </table> | |
35 | |
36 <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Whitening noise</h1> | |
37 <hr> | |
38 | |
39 <p> | |
40 <p> | |
41 The LTPDA toolbox offers various ways in which you could whiten data. Perhaps you know the whitening | |
42 filter you want to use, in which case you can build the filter and filter the data. Alternatively, you | |
43 may have a model for the spectral content of the data, in which case you can use the method <tt>ao/whiten1D</tt> | |
44 if you are dealing with single, uncorrelated data streams, or <tt>ao/whiten2D</tt> if you have a pair of | |
45 correlated data streams. You can also use <tt>ao/whiten1D</tt> in the case where you don't have a model for | |
46 the spectral content of the data. In this case, the method | |
47 calculates the spectrum of the data, re-bins the spectrum so to | |
48 reduce the individual points fluctuations, and fits a model | |
49 of the spectrum as a series of partial fractions z-domain filters. | |
50 </p> | |
51 <p> | |
52 The whitening algorithms are highly configurable and accept a large number of parameters. The main ones that | |
53 we will change from the defaults in the following examples are | |
54 <table cellspacing="0" class="body" cellpadding="2" border="0" width="80%"> | |
55 <colgroup> | |
56 <col width="25%"/> | |
57 <col width="75%"/> | |
58 </colgroup> | |
59 <thead> | |
60 <tr valign="top"> | |
61 <th class="categorylist">Key</th> | |
62 <th class="categorylist">Description</th> | |
63 </tr> | |
64 </thead> | |
65 <tbody> | |
66 <!-- Key 'Plot' --> | |
67 <tr valign="top"> | |
68 <td bgcolor="#f3f4f5"> | |
69 <p><tt>PLOT</tt></p> | |
70 </td> | |
71 <td bgcolor="#f3f4f5"> | |
72 <p>Plot the result of the fitting as it proceeds.</p> | |
73 </td> | |
74 </tr> | |
75 <!-- Key 'MAXORDER' --> | |
76 <tr valign="top"> | |
77 <td bgcolor="#f3f4f5"> | |
78 <p><tt>MAXORDER</tt></p> | |
79 </td> | |
80 <td bgcolor="#f3f4f5"> | |
81 <p>Specify the maximum allowed model order that can be fit.</p> | |
82 </td> | |
83 </tr> | |
84 <!-- Key 'weights' --> | |
85 <tr valign="top"> | |
86 <td bgcolor="#f3f4f5"> | |
87 <p><tt>WEIGHTS</tt></p> | |
88 </td> | |
89 <td bgcolor="#f3f4f5"> | |
90 <p>Choose the way the data is weighted in the fitting procedure.</p> | |
91 </td> | |
92 </tr> | |
93 <!-- Key 'RMSVAR' --> | |
94 <tr valign="top"> | |
95 <td bgcolor="#f3f4f5"> | |
96 <p><tt>RMSVAR</tt></p> | |
97 </td> | |
98 <td bgcolor="#f3f4f5"> | |
99 <p>Check if the variation of the RMS error is smaller than 10^(-b), | |
100 where b is the value given in the plist.</p> | |
101 </td> | |
102 </tr> | |
103 </tbody> | |
104 </table> | |
105 </p> | |
106 <p> | |
107 We will start by whitening some data using this last method, i.e., allowing <tt>whiten1D</tt> to determine | |
108 the whitening filter from the data itself. | |
109 </p> | |
110 <p> | |
111 The data we will whiten can be found in your data packet in the 'topic2' sub-directory. | |
112 </p> | |
113 <p> | |
114 We start by loading the mat file: | |
115 </p> | |
116 <div class="fragment"><pre> | |
117 a = ao(<span class="string">'topic2/whiten.mat'</span>); | |
118 </pre> | |
119 </div> | |
120 <p> | |
121 The AO stored in the variable <tt>a</tt> is a coloured noise time-series. | |
122 Let's have a look at this times series using <tt>iplot</tt>. | |
123 </p> | |
124 <div class="fragment"><pre> | |
125 >> iplot(a); | |
126 </pre></div> | |
127 <p>The result should be similar to: </p> | |
128 <img src="images/ltpda_training_1/topic2/coloured.png" alt="coloured" border="1"> | |
129 <p> | |
130 Before we can whiten the data, we have to define the parameter list for the whitening tool: | |
131 </p> | |
132 <div class="fragment"><pre> | |
133 pl = plist(... | |
134 <span class="string">'Plot'</span>, true, ... | |
135 <span class="string">'MaxOrder'</span>, 9, ... | |
136 <span class="string">'Weights'</span>, 2);</pre> | |
137 </div> | |
138 <p> | |
139 Now we can call the whitening function <tt>whiten1D</tt> with our input AO, <tt>a</tt> and the | |
140 parameter list <tt>pl</tt>: | |
141 </p> | |
142 <div class="fragment"><pre> >> aw = whiten1D(a,pl); </pre></div> | |
143 <p> | |
144 To compare the whitened data with the coloured noise we compute the power spectrum (for details see <a | |
145 href="ltpda_training_topic_3_2.html"><tt>Power spectral density estimation</tt></a>): | |
146 </p> | |
147 <div class="fragment"><pre> | |
148 awxx = aw.lpsd; | |
149 axx = a.lpsd; | |
150 </pre></div> | |
151 <p> | |
152 and finally plot our result in the frequency domain; in particular we plot the whitened data (<tt>awxx</tt>) compared to the coloured noise that was our input (<tt>axx</tt>). | |
153 </p> | |
154 </pre> </div> | |
155 <div class="fragment"><pre> | |
156 iplot(axx, awxx); | |
157 </pre> | |
158 </div> | |
159 <img src="images/ltpda_training_1/topic2/whiten.png" alt="white" border="1"> | |
160 | |
161 </p> | |
162 | |
163 <br> | |
164 <br> | |
165 <table class="nav" summary="Navigation aid" border="0" width= | |
166 "100%" cellpadding="0" cellspacing="0"> | |
167 <tr valign="top"> | |
168 <td align="left" width="20"><a href="ltpda_training_topic_2_5.html"><img src= | |
169 "b_prev.gif" border="0" align="bottom" alt= | |
170 "Remove trends from a time-series AO"></a> </td> | |
171 | |
172 <td align="left">Remove trends from a time-series AO</td> | |
173 | |
174 <td> </td> | |
175 | |
176 <td align="right">Select and find data from an AO</td> | |
177 | |
178 <td align="right" width="20"><a href= | |
179 "ltpda_training_topic_2_7.html"><img src="b_next.gif" border="0" align= | |
180 "bottom" alt="Select and find data from an AO"></a></td> | |
181 </tr> | |
182 </table><br> | |
183 | |
184 <p class="copy">©LTP Team</p> | |
185 </body> | |
186 </html> |