Mercurial > hg > ltpda
diff m-toolbox/html_help/help/ug/ltpda_training_topic_2_6.html @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/html_help/help/ug/ltpda_training_topic_2_6.html Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,186 @@ +<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" + "http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd"> + +<html lang="en"> +<head> + <meta name="generator" content= + "HTML Tidy for Mac OS X (vers 1st December 2004), see www.w3.org"> + <meta http-equiv="Content-Type" content= + "text/html; charset=us-ascii"> + + <title>Whitening noise (LTPDA Toolbox)</title> + <link rel="stylesheet" href="docstyle.css" type="text/css"> + <meta name="generator" content="DocBook XSL Stylesheets V1.52.2"> + <meta name="description" content= + "Presents an overview of the features, system requirements, and starting the toolbox."> + </head> + +<body> + <a name="top_of_page" id="top_of_page"></a> + + <p style="font-size:1px;"> </p> + + <table class="nav" summary="Navigation aid" border="0" width= + "100%" cellpadding="0" cellspacing="0"> + <tr> + <td valign="baseline"><b>LTPDA Toolbox</b></td><td><a href="../helptoc.html">contents</a></td> + + <td valign="baseline" align="right"><a href= + "ltpda_training_topic_2_5.html"><img src="b_prev.gif" border="0" align= + "bottom" alt="Remove trends from a time-series AO"></a> <a href= + "ltpda_training_topic_2_7.html"><img src="b_next.gif" border="0" align= + "bottom" alt="Select and find data from an AO"></a></td> + </tr> + </table> + + <h1 class="title"><a name="f3-12899" id="f3-12899"></a>Whitening noise</h1> + <hr> + + <p> + <p> + The LTPDA toolbox offers various ways in which you could whiten data. Perhaps you know the whitening + filter you want to use, in which case you can build the filter and filter the data. Alternatively, you + may have a model for the spectral content of the data, in which case you can use the method <tt>ao/whiten1D</tt> + if you are dealing with single, uncorrelated data streams, or <tt>ao/whiten2D</tt> if you have a pair of + correlated data streams. You can also use <tt>ao/whiten1D</tt> in the case where you don't have a model for + the spectral content of the data. In this case, the method + calculates the spectrum of the data, re-bins the spectrum so to + reduce the individual points fluctuations, and fits a model + of the spectrum as a series of partial fractions z-domain filters. +</p> +<p> + The whitening algorithms are highly configurable and accept a large number of parameters. The main ones that + we will change from the defaults in the following examples are + <table cellspacing="0" class="body" cellpadding="2" border="0" width="80%"> + <colgroup> + <col width="25%"/> + <col width="75%"/> + </colgroup> + <thead> + <tr valign="top"> + <th class="categorylist">Key</th> + <th class="categorylist">Description</th> + </tr> + </thead> + <tbody> + <!-- Key 'Plot' --> + <tr valign="top"> + <td bgcolor="#f3f4f5"> + <p><tt>PLOT</tt></p> + </td> + <td bgcolor="#f3f4f5"> + <p>Plot the result of the fitting as it proceeds.</p> + </td> + </tr> + <!-- Key 'MAXORDER' --> + <tr valign="top"> + <td bgcolor="#f3f4f5"> + <p><tt>MAXORDER</tt></p> + </td> + <td bgcolor="#f3f4f5"> + <p>Specify the maximum allowed model order that can be fit.</p> + </td> + </tr> + <!-- Key 'weights' --> + <tr valign="top"> + <td bgcolor="#f3f4f5"> + <p><tt>WEIGHTS</tt></p> + </td> + <td bgcolor="#f3f4f5"> + <p>Choose the way the data is weighted in the fitting procedure.</p> + </td> + </tr> + <!-- Key 'RMSVAR' --> + <tr valign="top"> + <td bgcolor="#f3f4f5"> + <p><tt>RMSVAR</tt></p> + </td> + <td bgcolor="#f3f4f5"> + <p>Check if the variation of the RMS error is smaller than 10^(-b), + where b is the value given in the plist.</p> + </td> + </tr> + </tbody> + </table> +</p> +<p> + We will start by whitening some data using this last method, i.e., allowing <tt>whiten1D</tt> to determine + the whitening filter from the data itself. +</p> +<p> + The data we will whiten can be found in your data packet in the 'topic2' sub-directory. +</p> +<p> + We start by loading the mat file: +</p> +<div class="fragment"><pre> + a = ao(<span class="string">'topic2/whiten.mat'</span>); + </pre> +</div> +<p> + The AO stored in the variable <tt>a</tt> is a coloured noise time-series. + Let's have a look at this times series using <tt>iplot</tt>. +</p> +<div class="fragment"><pre> + >> iplot(a); +</pre></div> +<p>The result should be similar to: </p> +<img src="images/ltpda_training_1/topic2/coloured.png" alt="coloured" border="1"> +<p> + Before we can whiten the data, we have to define the parameter list for the whitening tool: +</p> +<div class="fragment"><pre> + pl = plist(... + <span class="string">'Plot'</span>, true, ... + <span class="string">'MaxOrder'</span>, 9, ... + <span class="string">'Weights'</span>, 2);</pre> +</div> +<p> + Now we can call the whitening function <tt>whiten1D</tt> with our input AO, <tt>a</tt> and the + parameter list <tt>pl</tt>: +</p> +<div class="fragment"><pre> >> aw = whiten1D(a,pl); </pre></div> +<p> + To compare the whitened data with the coloured noise we compute the power spectrum (for details see <a + href="ltpda_training_topic_3_2.html"><tt>Power spectral density estimation</tt></a>): +</p> +<div class="fragment"><pre> + awxx = aw.lpsd; + axx = a.lpsd; +</pre></div> +<p> + and finally plot our result in the frequency domain; in particular we plot the whitened data (<tt>awxx</tt>) compared to the coloured noise that was our input (<tt>axx</tt>). +</p> +</pre> </div> +<div class="fragment"><pre> + iplot(axx, awxx); + </pre> +</div> +<img src="images/ltpda_training_1/topic2/whiten.png" alt="white" border="1"> + + </p> + + <br> + <br> + <table class="nav" summary="Navigation aid" border="0" width= + "100%" cellpadding="0" cellspacing="0"> + <tr valign="top"> + <td align="left" width="20"><a href="ltpda_training_topic_2_5.html"><img src= + "b_prev.gif" border="0" align="bottom" alt= + "Remove trends from a time-series AO"></a> </td> + + <td align="left">Remove trends from a time-series AO</td> + + <td> </td> + + <td align="right">Select and find data from an AO</td> + + <td align="right" width="20"><a href= + "ltpda_training_topic_2_7.html"><img src="b_next.gif" border="0" align= + "bottom" alt="Select and find data from an AO"></a></td> + </tr> + </table><br> + + <p class="copy">©LTP Team</p> +</body> +</html>