diff testing/utp_1.1/utps/ao/utp_ao_lcohere.m @ 44:409a22968d5e default

Add unit tests
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Tue, 06 Dec 2011 18:42:11 +0100
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/testing/utp_1.1/utps/ao/utp_ao_lcohere.m	Tue Dec 06 18:42:11 2011 +0100
@@ -0,0 +1,1434 @@
+% UTP_AO_LCOHERE a set of UTPs for the ao/lcohere method
+%
+% M Hewitson 06-08-08
+%
+% $Id: utp_ao_lcohere.m,v 1.26 2011/07/22 12:29:58 mauro Exp $
+%
+
+% <MethodDescription>
+%
+% The lcohere method of the ao class computes the lcoherence between two
+% time-series AOs on a log frequency axis.
+%
+% </MethodDescription>
+
+function results = utp_ao_lcohere(varargin)
+  
+  % Check the inputs
+  if nargin == 0
+    
+    % Some keywords
+    class   = 'ao';
+    mthd    = 'lcohere';
+    
+    results = [];
+    disp('******************************************************');
+    disp(['****  Running UTPs for ' class '/' mthd]);
+    disp('******************************************************');
+    
+    % Test AOs
+    [at1,at2,at3,at4,at5,at6] = eval(['get_test_objects_' class]);
+    
+    % Exception list for the UTPs:
+    [ple1,ple2,ple3,ple4,ple5,ple6] = get_test_ples();
+    
+    % Get default window from the preferences
+    prefs = getappdata(0, 'LTPDApreferences');
+    defaultWinType = char(prefs.getMiscPrefs.getDefaultWindow);
+    
+    % Run the tests
+    results = [results utp_01];    % getInfo call
+    results = [results utp_02];    % Vector input          (only with two objects)
+    results = [results utp_03];    % Matrix input          (not possible)
+    results = [results utp_04];    % List input            (only with two objects)
+    results = [results utp_05];    % Test with mixed input (not possible)
+    results = [results utp_06];    % Test history is working
+    results = [results utp_07];    % Test the modify call works
+    results = [results utp_08];    % Test input data shape == output data shape
+    results = [results utp_09];    % Test output of the data
+    
+    results = [results utp_11(mthd, [at1 at1], ple1)];    % Test plotinfo doesn't disappear
+    
+    results = [results utp_12];    % Test basic symmetry properties of lcohere (C)
+    results = [results utp_13];    % Test basic symmetry properties of lcohere (MS)
+    results = [results utp_14];    % Test basic symmetry properties of lcohere (C)
+    results = [results utp_15];    % Test basic symmetry properties of lcohere (MS)
+    results = [results utp_16];    % Test basic relationship (MS) <-> (C)
+    results = [results utp_17];    % Test units handling: complex cohere
+    results = [results utp_18];    % Test units handling: magnitude-squared cohere
+    results = [results utp_30];    % Special cases: same input
+    
+    disp('Done.');
+    disp('******************************************************');
+    
+  elseif nargin == 1 % Check for UTP functions
+    if strcmp(varargin{1}, 'isutp')
+      results = 1;
+    else
+      results = 0;
+    end
+  else
+    error('### Incorrect inputs')
+  end
+  
+  %% UTP_01
+  
+  % <TestDescription>
+  %
+  % Tests that the getInfo call works for this method.
+  %
+  % </TestDescription>
+  function result = utp_01
+    
+    
+    % <SyntaxDescription>
+    %
+    % Test that the getInfo call works for no sets, all sets, and each set
+    % individually.
+    %
+    % </SyntaxDescription>
+    
+    try
+      % <SyntaxCode>
+      % Call for no sets
+      io(1) = eval([class '.getInfo(''' mthd ''', ''None'')']);
+      % Call for all sets
+      io(2) = eval([class '.getInfo(''' mthd ''')']);
+      % Call for each set
+      for kk=1:numel(io(2).sets)
+        io(kk+2) = eval([class '.getInfo(''' mthd ''', ''' io(2).sets{kk} ''')']);
+      end
+      % </SyntaxCode>
+      stest = true;
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that getInfo call returned an minfo object in all cases.
+    % 2) Check that all plists have the correct parameters.
+    %
+    % </AlgoDescription>
+    
+    atest = true;
+    if stest
+      % <AlgoCode>
+      % check we have minfo objects
+      if isa(io, 'minfo')
+        
+        %%% SET 'None'
+        if ~isempty(io(1).sets), atest = false; end
+        if ~isempty(io(1).plists), atest = false; end
+        %%% Check all Sets
+        if ~any(strcmpi(io(2).sets, 'Default')), atest = false; end
+        if numel(io(2).plists) ~= numel(io(2).sets), atest = false; end
+        %%%%%%%%%%   SET 'Default'
+        if io(3).plists.nparams ~= 10, atest = false; end
+        % Check key
+        if ~io(3).plists.isparam('kdes'), atest = false; end
+        if ~io(3).plists.isparam('jdes'), atest = false; end
+        if ~io(3).plists.isparam('lmin'), atest = false; end
+        if ~io(3).plists.isparam('win'), atest = false; end
+        if ~io(3).plists.isparam('olap'), atest = false; end
+        if ~io(3).plists.isparam('type'), atest = false; end
+        if ~io(3).plists.isparam('order'), atest = false; end
+        if ~io(3).plists.isparam('psll'), atest = false; end
+        if ~io(3).plists.isparam('times'), atest = false; end
+        if ~io(3).plists.isparam('split'), atest = false; end
+        % Check default value
+        if ~isequal(io(3).plists.find('kdes'), 100), atest = false; end
+        if ~isequal(io(3).plists.find('jdes'), 1000), atest = false; end
+        if ~isequal(io(3).plists.find('lmin'), 0), atest = false; end
+        if ~strcmpi(io(3).plists.find('win'), defaultWinType), atest = false; end
+        if ~isequal(io(3).plists.find('olap'), -1), atest = false; end
+        if ~isequal(io(3).plists.find('type'), 'C'), atest = false; end
+        if ~isequal(io(3).plists.find('order'), 0), atest = false; end
+        if ~isequal(io(3).plists.find('psll'), 200), atest = false; end
+        if ~isEmptyDouble(io(3).plists.find('times')), atest = false; end
+        if ~isEmptyDouble(io(3).plists.find('split')), atest = false; end
+        % Check options
+        if ~isequal(io(3).plists.getOptionsForParam('kdes'), {100}), atest = false; end
+        if ~isequal(io(3).plists.getOptionsForParam('jdes'), {1000}), atest = false; end
+        if ~isequal(io(3).plists.getOptionsForParam('lmin'), {0}), atest = false; end
+        if ~isequal(io(3).plists.getOptionsForParam('win'), specwin.getTypes), atest = false; end
+        if ~isequal(io(3).plists.getOptionsForParam('olap'), {-1}), atest = false; end
+        if ~isequal(io(3).plists.getOptionsForParam('type'), {'C', 'MS'}), atest = false; end
+        if ~isequal(io(3).plists.getOptionsForParam('order'), {-1 0 1 2 3 4 5 6 7 8 9}), atest = false; end
+        if ~isequal(io(3).plists.getOptionsForParam('psll'), {200}), atest = false; end
+        if ~isequal(io(3).plists.getOptionsForParam('times'), {[]}), atest = false; end
+        if ~isequal(io(3).plists.getOptionsForParam('split'), {[]}), atest = false; end
+      end
+      % </AlgoCode>
+    else
+      atest = false;
+    end
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_01
+  
+  %% UTP_02
+  
+  % <TestDescription>
+  %
+  % Tests that the lcohere method works with a vector of AOs as input. (only
+  % with two objects in the vector)
+  %
+  % </TestDescription>
+  function result = utp_02
+    
+    % <SyntaxDescription>
+    %
+    % Test that the lcohere method works for a vector of AOs as input.
+    %
+    % </SyntaxDescription>
+    
+    try
+      % <SyntaxCode>
+      avec = [at1 at5];
+      out  = lcohere(avec);
+      % </SyntaxCode>
+      stest = true;
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that the number of elements in 'out' is equal to 1.
+    %
+    % </AlgoDescription>
+    
+    atest = true;
+    if stest
+      % <AlgoCode>
+      % Check we have the correct number of outputs
+      if numel(out) ~= 1, atest = false; end
+      % </AlgoCode>
+    else
+      atest = false;
+    end
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_02
+  
+  %% UTP_03
+  
+  % <TestDescription>
+  %
+  % Test that the lcohere method doesn't work for a matrix of AOs as input.
+  %
+  % </TestDescription>
+  function result = utp_03
+    
+    % <SyntaxDescription>
+    %
+    % Test that the lcohere method doesn't work for a matrix of AOs as input.
+    %
+    % </SyntaxDescription>
+    
+    try
+      % <SyntaxCode>
+      amat = [at1 at5; at5 at6];
+      out  = lcohere(amat);
+      % </SyntaxCode>
+      stest = false;
+    catch err
+      stest = true;
+    end
+    
+    % <AlgoDescription>
+    %
+    % 1) Nothing to check.
+    %
+    % </AlgoDescription>
+    
+    atest = true;
+    if stest
+      % <AlgoCode>
+      % </AlgoCode>
+    else
+      atest = false;
+    end
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_03
+  
+  %% UTP_04
+  
+  % <TestDescription>
+  %
+  % Tests that the lcohere method works with a list of AOs as input.
+  %
+  % </TestDescription>
+  function result = utp_04
+    
+    % <SyntaxDescription>
+    %
+    % Test that the lcohere method works for a list of AOs as input.
+    %
+    % </SyntaxDescription>
+    
+    try
+      % <SyntaxCode>
+      out = lcohere(at1,at5);
+      % </SyntaxCode>
+      stest = true;
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that the number of elements in 'out' is equal to 1.
+    %
+    % </AlgoDescription>
+    
+    atest = true;
+    if stest
+      % <AlgoCode>
+      % Check we have the correct number of outputs
+      if numel(out) ~= 1, atest = false; end
+      % </AlgoCode>
+    else
+      atest = false;
+    end
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_04
+  
+  %% UTP_05
+  
+  % <TestDescription>
+  %
+  % Tests that the lcohere method doesn't work with a mix of different
+  % shaped AOs as input.
+  %
+  % </TestDescription>
+  function result = utp_05
+    
+    % <SyntaxDescription>
+    %
+    % Test that the lcohere method doesn't work with an input of matrices
+    % and vectors and single AOs.
+    %
+    % </SyntaxDescription>
+    
+    try
+      % <SyntaxCode>
+      out = lcohere(at1,[at5 at6],at5,[at5 at1; at6 at1],at6);
+      stest = false;
+      % </SyntaxCode>
+    catch err
+      stest = true;
+    end
+    
+    % <AlgoDescription>
+    %
+    % 1) Nothing to check.
+    %
+    % </AlgoDescription>
+    
+    atest = true;
+    if stest
+      % <AlgoCode>
+      % </AlgoCode>
+    else
+      atest = false;
+    end
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_05
+  
+  %% UTP_06
+  
+  % <TestDescription>
+  %
+  % Tests that the lcohere method properly applies history.
+  %
+  % </TestDescription>
+  function result = utp_06
+    
+    % <SyntaxDescription>
+    %
+    % Test that the result of applying the lcohere method can be processed back
+    % to an m-file.
+    %
+    % </SyntaxDescription>
+    
+    try
+      % <SyntaxCode>
+      out  = lcohere(at5,at6);
+      mout = rebuild(out);
+      % </SyntaxCode>
+      stest = true;
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that the last entry in the history of 'out' corresponds to
+    %    'lcohere'.
+    % 2) Check that the re-built object is the same as 'out'.
+    %
+    % </AlgoDescription>
+    
+    atest = true;
+    if stest
+      % <AlgoCode>
+      % Check the last step in the history of 'out'
+      if ~strcmp(out.hist.methodInfo.mname, 'lcohere'), atest = false; end
+      % Check the re-built object
+      if ~eq(mout, out, ple2), atest = false; end
+      % </AlgoCode>
+    else
+      atest = false;
+    end
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_06
+  
+  %% UTP_07
+  
+  % <TestDescription>
+  %
+  % Tests that the lcohere method can not modify the input AO.
+  %
+  % </TestDescription>
+  function result = utp_07
+    
+    % <SyntaxDescription>
+    %
+    % Test that the lcohere method can not modify the input AO.
+    % The method must throw an error for the modifier call.
+    %
+    % </SyntaxDescription>
+    
+    try
+      % <SyntaxCode>
+      % copy at1 to work with
+      ain = ao(at1);
+      % modify ain
+      ain.lcohere(at5);
+      % </SyntaxCode>
+      stest = false;
+    catch err
+      stest = true;
+    end
+    
+    % <AlgoDescription>
+    %
+    % 1) Nothing to check.
+    %
+    % </AlgoDescription>
+    
+    atest = true;
+    if stest
+      % <AlgoCode>
+      % </AlgoCode>
+    else
+      atest = false;
+    end
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_07
+  
+  %% UTP_08
+  
+  % <TestDescription>
+  %
+  % Test the shape of the output.
+  %
+  % </TestDescription>
+  function result = utp_08
+    
+    % <SyntaxDescription>
+    %
+    % Test that the lcohere method keeps the data shape of the input object. The
+    % input AO must be an AO with row data and an AO with column data.
+    %
+    % </SyntaxDescription>
+    
+    try
+      % <SyntaxCode>
+      out1 = lcohere(at5, at6);
+      out2 = lcohere(at6, at5);
+      % </SyntaxCode>
+      stest = true;
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that the shpe of the output data doesn't change.
+    %
+    % </AlgoDescription>
+    
+    atest = true;
+    if stest
+      % <AlgoCode>
+      % Check the shape of the output data
+      if size(out1.data.y, 2) ~= 1, atest = false; end
+      if size(out2.data.y, 1) ~= 1, atest = false; end
+      % </AlgoCode>
+    else
+      atest = false;
+    end
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_08
+  
+  %% UTP_09
+  
+  % <TestDescription>
+  %
+  % Check that the lcohere method pass back the output objects to a list of
+  % output variables or to a single variable.
+  %
+  % </TestDescription>
+  function result = utp_09
+    
+    % <SyntaxDescription>
+    %
+    % This test is not longer necessary because the cohere method pass back
+    % always only one object.
+    %
+    % </SyntaxDescription>
+    
+    try
+      % <SyntaxCode>
+      % </SyntaxCode>
+      stest = true;
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    
+    % <AlgoDescription>
+    %
+    % 1) Nothing to check.
+    %
+    % </AlgoDescription>
+    
+    atest = true;
+    if stest
+      % <AlgoCode>
+      % </AlgoCode>
+    else
+      atest = false;
+    end
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_09
+  
+  %% UTP_12
+  
+  % <TestDescription>
+  %
+  % Tests symmetry properties of complex-coherence:
+  % 1) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 2) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 3) complex lcoherence of the white noise series
+  % 4) compare C(x,y) with conj(C(y,x))
+  % 5) compare C(x,x) and C(y,y) with 1
+  %
+  
+  % </TestDescription>
+  function result = utp_12
+    
+    % <SyntaxDescription>
+    %
+    % 1) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 2) Assign a random unit
+    % 3) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 4) Assign a random unit
+    % 5) complex log-scale coherence of the white noise
+    %
+    % </SyntaxDescription>
+    
+    % <SyntaxCode>
+    try
+      
+      % Array of parameters to pick from
+      fs_list =             [0.1;1;10];
+      nsecs_list =          [100:100:10000]';
+      sigma_distr_list =    [1e-6 2e-3 0.25 1:0.1:10]';
+      mu_distr_list =       [1e-6 2e-3 0.25 1:0.1:10]';
+      
+      % Build time-series test data
+      
+      % Picks the values at random from the list
+      fs = utils.math.randelement(fs_list, 1);
+      nsecs = utils.math.randelement(nsecs_list, 1);
+      sigma_distr = utils.math.randelement(sigma_distr_list, 1);
+      mu_distr = utils.math.randelement(mu_distr_list, 1);
+      f = [1:5] / 100 * fs;
+      A = sigma_distr + sigma_distr*rand(1,1);
+      phi = 0 + 2*pi*rand(1,1);
+      
+      % White noise
+      type = 'Normal';
+      a_n1 = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr));
+      a_n2 = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr));
+      a_const = ao(mu_distr);
+      a_wave = ao(plist('waveform', 'sine-wave', ...
+        'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi));
+      a_1 = a_n1 + a_const + a_wave;
+      a_2 = a_n2 + a_wave;
+      
+      % Set units and prefix from those supported
+      unit_list = unit.supportedUnits;
+      % remove the first empty unit '' from the list, because then is it
+      % possible that we add a prefix to an empty unit
+      unit_list = unit_list(2:end);
+      prefix_list = unit.supportedPrefixes;
+      a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      
+      % Evaluate the complex coherence of the time-series data
+      win_list = specwin.getTypes;
+      win = utils.math.randelement(win_list,1);
+      win = win{1};
+      if strcmp(win, 'Kaiser')
+        win = specwin(win, 1, find(ao.getInfo('psd').plists, 'psll'));
+      else
+        win = specwin(win, 1);
+      end
+      olap = win.rov;
+      detrend = 0;
+      scale_type = 'C';
+      
+      C12 = lcohere(a_1, a_2, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      C21 = lcohere(a_2, a_1, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      C21_cc = conj(C21);
+      C11 = lcohere(a_1, a_1, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      C22 = lcohere(a_2, a_2, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      stest = true;
+      
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    % </SyntaxCode>
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that C(x,y) equals conj(C(y,x))
+    % 2) Check that C(x,x) equals 1
+    % 2) Check that C(y,y) equals 1
+    
+    % </AlgoDescription>
+    
+    % <AlgoCode>
+    atest = true;
+    tol = 1e-12;
+    
+    if stest
+      if ~eq(C12.data, C21_cc.data, 'dy') || ...
+          any(abs(C11.y-ones(size(C11.y))) > tol) || ...
+          any(abs(C22.y-ones(size(C22.y))) > tol)
+        atest = false;
+      end
+    else
+      atest = false;
+    end
+    % </AlgoCode>
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_12
+  
+  %% UTP_13
+  
+  % <TestDescription>
+  %
+  % Tests symmetry properties of complex-coherence:
+  % 1) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 2) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 3) magnitude-squared log-scale coherence of the white noise series
+  % 4) compare C(x,y) with C(y,x)
+  % 5) compare C(x,x) and C(y,y) with 1
+  %
+  
+  % </TestDescription>
+  function result = utp_13
+    
+    % <SyntaxDescription>
+    %
+    % 1) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 2) Assign a random unit
+    % 3) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 4) Assign a random unit
+    % 5) magnitude-squared log-scale coherence of the white noise
+    %
+    % </SyntaxDescription>
+    
+    % <SyntaxCode>
+    try
+      
+      % Array of parameters to pick from
+      fs_list =             [0.1;1;10];
+      nsecs_list =          [100:100:10000]';
+      sigma_distr_list =    [1e-6 2e-3 0.25 1:0.1:10]';
+      mu_distr_list =       [1e-6 2e-3 0.25 1:0.1:10]';
+      
+      % Build time-series test data
+      
+      % Picks the values at random from the list
+      fs = utils.math.randelement(fs_list, 1);
+      nsecs = utils.math.randelement(nsecs_list, 1);
+      sigma_distr = utils.math.randelement(sigma_distr_list, 1);
+      mu_distr = utils.math.randelement(mu_distr_list, 1);
+      f = [1:5] / 100 * fs;
+      A = sigma_distr + sigma_distr*rand(1,1);
+      phi = 0 + 2*pi*rand(1,1);
+      
+      % White noise
+      type = 'Normal';
+      a_n1 = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr));
+      a_n2 = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr));
+      a_const = ao(mu_distr);
+      a_wave = ao(plist('waveform', 'sine-wave', ...
+        'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi));
+      a_1 = a_n1 + a_const + a_wave;
+      a_2 = a_n2 + a_wave;
+      
+      % Set units and prefix from those supported
+      unit_list = unit.supportedUnits;
+      % remove the first empty unit '' from the list, because then is it
+      % possible that we add a prefix to an empty unit
+      unit_list = unit_list(2:end);
+      prefix_list = unit.supportedPrefixes;
+      a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      
+      % Evaluate the magnitude-squared coherence of the time-series data
+      win_list = specwin.getTypes;
+      win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1);
+      win_type = win_type{1};
+      if strcmp(win_type, 'Kaiser')
+        win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll'));
+      else
+        win = specwin(win_type, 1);
+      end
+      olap = win.rov;
+      detrend = 0;
+      scale_type = 'MS';
+      
+      C12 = lcohere(a_1, a_2, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      C21 = lcohere(a_2, a_1, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      C11 = lcohere(a_1, a_1, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      C22 = lcohere(a_2, a_2, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      stest = true;
+      
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    % </SyntaxCode>
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that C(x,y) equals C(y,x)
+    % 1) Check that C(x,x) equals 1
+    % 1) Check that C(y,y) equals 1
+    
+    % </AlgoDescription>
+    
+    % <AlgoCode>
+    atest = true;
+    tol = 1e-12;
+    
+    if stest
+      if ~eq(C12.data, C21.data) || ...
+          any(abs(C11.y - ones(size(C11.y))) > tol) || ...
+          any(abs(C22.y - ones(size(C22.y))) > tol)
+        atest = false;
+      end
+    else
+      atest = false;
+    end
+    % </AlgoCode>
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_13
+  
+  %% UTP_14
+  
+  % <TestDescription>
+  %
+  % Tests symmetry properties of complex-coherence:
+  % 1) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 2) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 3) complex log-scale coherence of the combination of white noise series
+  % 4) compare C(x,y) with 1
+  %
+  
+  % </TestDescription>
+  function result = utp_14
+    
+    % <SyntaxDescription>
+    %
+    % 1) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 2) Assign a random unit
+    % 3) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 4) Assign a random unit
+    % 5) complex log-scale coherence of the combination of noise
+    %
+    % </SyntaxDescription>
+    
+    % <SyntaxCode>
+    try
+      
+      % Array of parameters to pick from
+      fs_list =             [0.1;1;10];
+      nsecs_list =          [100:100:10000]';
+      sigma_distr_list =    [1e-6 2e-3 0.25 1:0.1:10]';
+      mu_distr_list =       [1e-6 2e-3 0.25 1:0.1:10]';
+      
+      % Build time-series test data
+      
+      % Picks the values at random from the list
+      fs = utils.math.randelement(fs_list, 1);
+      nsecs = utils.math.randelement(nsecs_list, 1);
+      sigma_distr = utils.math.randelement(sigma_distr_list, 1);
+      mu_distr = utils.math.randelement(mu_distr_list, 1);
+      f = [1:5] / 100 * fs;
+      A = sigma_distr + sigma_distr*rand(1,1);
+      phi = 0 + 2*pi*rand(1,1);
+      
+      % White noise
+      type = 'Normal';
+      a_n = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr));
+      a_const = ao(mu_distr);
+      % Sinusoidal signal
+      a_wave = ao(plist('waveform', 'sine-wave', ...
+        'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi));
+      a_1 = a_n + a_wave;
+      % Linear combination (totally correlated time series)
+      a_2 = a_1 + a_const;
+      
+      % Set units and prefix from those supported
+      unit_list = unit.supportedUnits;
+      % remove the first empty unit '' from the list, because then is it
+      % possible that we add a prefix to an empty unit
+      unit_list = unit_list(2:end);
+      prefix_list = unit.supportedPrefixes;
+      a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      
+      % Evaluate the complex coherence of the time-series data
+      win_list = specwin.getTypes;
+      win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1);
+      win_type = win_type{1};
+      if strcmp(win_type, 'Kaiser')
+        win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll'));
+      else
+        win = specwin(win_type, 1);
+      end
+      olap = win.rov;
+      detrend = 0;
+      scale_type = 'C';
+      
+      C = lcohere(a_1, a_2, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      stest = true;
+      
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    % </SyntaxCode>
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that the complex coherence equals 1
+    
+    % </AlgoDescription>
+    
+    % <AlgoCode>
+    atest = true;
+    TOL = 1e-12;
+    
+    if stest
+      if any(abs((C.y - 1)) > TOL)
+        atest = false;
+      end
+    else
+      atest = false;
+    end
+    % </AlgoCode>
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_14
+  
+  %% UTP_15
+  
+  % <TestDescription>
+  %
+  % Tests symmetry properties of complex-coherence:
+  % 1) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 2) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 3) magnitude-squared log-scale coherence of the combination of white noise series
+  % 4) compare C(x,y) with 1
+  %
+  
+  % </TestDescription>
+  function result = utp_15
+    
+    % <SyntaxDescription>
+    %
+    % 1) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 2) Assign a random unit
+    % 3) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 4) Assign a random unit
+    % 5) magnitude-squared log-scale coherence of the combination of noise
+    %
+    % </SyntaxDescription>
+    
+    % <SyntaxCode>
+    try
+      
+      % Array of parameters to pick from
+      fs_list =             [0.1;1;10];
+      nsecs_list =          [100:100:10000]';
+      sigma_distr_list =    [1e-6 2e-3 0.25 1:0.1:10]';
+      mu_distr_list =       [1e-6 2e-3 0.25 1:0.1:10]';
+      
+      % Build time-series test data
+      
+      % Picks the values at random from the list
+      fs = utils.math.randelement(fs_list, 1);
+      nsecs = utils.math.randelement(nsecs_list, 1);
+      sigma_distr = utils.math.randelement(sigma_distr_list, 1);
+      mu_distr = utils.math.randelement(mu_distr_list, 1);
+      f = [1:5] / 100 * fs;
+      A = sigma_distr + sigma_distr*rand(1,1);
+      phi = 0 + 2*pi*rand(1,1);
+      
+      % White noise
+      type = 'Normal';
+      a_n = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr));
+      a_const = ao(mu_distr);
+      % Sinusoidal signal
+      a_wave = ao(plist('waveform', 'sine-wave', ...
+        'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi));
+      a_1 = a_n + a_wave;
+      % Linear combination (totally correlated time series)
+      a_2 = a_1 + a_const;
+      
+      % Set units and prefix from those supported
+      unit_list = unit.supportedUnits;
+      % remove the first empty unit '' from the list, because then is it
+      % possible that we add a prefix to an empty unit
+      unit_list = unit_list(2:end);
+      prefix_list = unit.supportedPrefixes;
+      a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      
+      % Evaluate the complex coherence of the time-series data
+      win_list = specwin.getTypes;
+      win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1);
+      win_type = win_type{1};
+      if strcmp(win_type, 'Kaiser')
+        win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll'));
+      else
+        win = specwin(win_type, 1);
+      end
+      olap = win.rov;
+      detrend = 0;
+      scale_type = 'MS';
+      
+      C = lcohere(a_1, a_2, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      stest = true;
+      
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    % </SyntaxCode>
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that the magnitude-squared coherence equals 1
+    
+    % </AlgoDescription>
+    
+    % <AlgoCode>
+    atest = true;
+    
+    if stest
+      if ~eq(C.y, ones(size(C.y)))
+        atest = false;
+      end
+    else
+      atest = false;
+    end
+    % </AlgoCode>
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_15
+  
+  %% UTP_16
+  
+  % <TestDescription>
+  %
+  % Tests symmetry properties of complex-coherence:
+  % 1) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 2) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 3) magnitude-squared log-scale coherence M of the combination of white noise series
+  % 4) complex log-scale coherence C of the combination of white noise series
+  % 5) compare abs(C)^2 with M
+  %
+  
+  % </TestDescription>
+  function result = utp_16
+    
+    % <SyntaxDescription>
+    %
+    % 1) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 2) Assign a random unit
+    % 3) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 4) Assign a random unit
+    % 5) magnitude-squared log-scale coherence of the combination of noise
+    % 6) complex log-scale coherence of the combination of noise
+    %
+    % </SyntaxDescription>
+    
+    % <SyntaxCode>
+    try
+      
+      % Array of parameters to pick from
+      fs_list =             [0.1;1;10];
+      nsecs_list =          [100:100:10000]';
+      sigma_distr_list =    [1e-6 2e-3 0.25 1:0.1:10]';
+      mu_distr_list =       [1e-6 2e-3 0.25 1:0.1:10]';
+      
+      % Build time-series test data
+      
+      % Picks the values at random from the list
+      fs = utils.math.randelement(fs_list, 1);
+      nsecs = utils.math.randelement(nsecs_list, 1);
+      sigma_distr = utils.math.randelement(sigma_distr_list, 1);
+      mu_distr = utils.math.randelement(mu_distr_list, 1);
+      f = [1:5] / 100 * fs;
+      A = sigma_distr + sigma_distr*rand(1,1);
+      phi = 0 + 2*pi*rand(1,1);
+      
+      % White noise
+      type = 'Normal';
+      a_n = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr));
+      a_const = ao(mu_distr);
+      % Sinusoidal signal
+      a_wave = ao(plist('waveform', 'sine-wave', ...
+        'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi));
+      a_1 = a_n + a_wave;
+      % Linear combination (totally correlated time series)
+      a_2 = a_1 + a_const;
+      
+      % Set units and prefix from those supported
+      unit_list = unit.supportedUnits;
+      % remove the first empty unit '' from the list, because then is it
+      % possible that we add a prefix to an empty unit
+      unit_list = unit_list(2:end);
+      prefix_list = unit.supportedPrefixes;
+      a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      
+      % Evaluate the complex coherence of the time-series data
+      win_list = specwin.getTypes;
+      win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1);
+      win_type = win_type{1};
+      if strcmp(win_type, 'Kaiser')
+        win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll'));
+      else
+        win = specwin(win_type, 1);
+      end
+      olap = win.rov;
+      detrend = 0;
+      
+      M = lcohere(a_1, a_2, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', 'MS'));
+      C = lcohere(a_1, a_2, ...
+        plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', 'C'));
+      stest = true;
+      
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    % </SyntaxCode>
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that the magnitude-squared coherence equals the square
+    % modulus of the complex coherence
+    
+    % </AlgoDescription>
+    
+    % <AlgoCode>
+    atest = true;
+    TOL = 1e-15;
+    
+    if stest
+      if any(abs(M.y - abs(C.y).^2) > TOL)
+        atest = false;
+      end
+    else
+      atest = false;
+    end
+    % </AlgoCode>
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_16
+  
+  %% UTP_17
+  
+  % <TestDescription>
+  %
+  % Tests handling of units:
+  % 1) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 2) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 3) complex log-scale coherence of the white noise series
+  % 4) compares the units of the input and output
+  %
+  
+  % </TestDescription>
+  function result = utp_17
+    
+    % <SyntaxDescription>
+    %
+    % 1) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 2) Assign a random unit
+    % 3) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 4) Assign a random unit
+    % 5) complex cohere of the white noise
+    %
+    % </SyntaxDescription>
+    
+    % <SyntaxCode>
+    try
+      
+      % Build time-series test data
+      fs = 1;
+      nsecs = 86400;
+      sigma_distr_1 = 4.69e-12;
+      mu_distr_1 = -5.11e-14;
+      sigma_distr_2 = 6.04e-9;
+      mu_distr_2 = 1.5e-10;
+      
+      % White noise
+      type = 'Normal';
+      
+      a_n = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1));
+      a_const = ao(mu_distr_1);
+      a_1 = a_n + a_const;
+      
+      a_n = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2));
+      a_const = ao(mu_distr_2);
+      a_2 = a_n + a_const;
+      
+      % Set units and prefix from those supported
+      unit_list = unit.supportedUnits;
+      % remove the first empty unit '' from the list, because then is it
+      % possible that we add a prefix to an empty unit
+      unit_list = unit_list(2:end);
+      prefix_list = unit.supportedPrefixes;
+      a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      
+      % Evaluate the log-scale coherence of the time-series data
+      win = specwin('BH92');
+      olap = win.rov;
+      detrend = 0;
+      scale_type = 'C';
+      
+      C = lcohere(a_1, a_2, plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      
+      stest = true;
+      
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    % </SyntaxCode>
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that (complex coherence yunits) equals [1]
+    % 2) Check that (complex coherence xunits) equals [Hz]
+    
+    % </AlgoDescription>
+    
+    % <AlgoCode>
+    atest = true;
+    
+    if stest
+      if ne(C.yunits, unit(''))  || ne(C.xunits, unit('Hz'))
+        atest = false;
+      end
+    else
+      atest = false;
+    end
+    % </AlgoCode>
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_17
+  
+  %% UTP_18
+  
+  % <TestDescription>
+  %
+  % Tests handling of units:
+  % 1) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 2) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 3) magnitude-squared log-scale coherence of the white noise series
+  % 4) compares the units of the input and output
+  %
+  
+  % </TestDescription>
+  function result = utp_18
+    
+    % <SyntaxDescription>
+    %
+    % 1) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 2) Assign a random unit
+    % 3) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 4) Assign a random unit
+    % 5) magnitude-squared cohere of the white noise
+    %
+    % </SyntaxDescription>
+    
+    % <SyntaxCode>
+    try
+      
+      % Build time-series test data
+      fs = 1;
+      nsecs = 86400;
+      sigma_distr_1 = 4.69e-12;
+      mu_distr_1 = -5.11e-14;
+      sigma_distr_2 = 6.04e-9;
+      mu_distr_2 = 1.5e-10;
+      
+      % White noise
+      type = 'Normal';
+      
+      a_n = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1));
+      a_const = ao(mu_distr_1);
+      a_1 = a_n + a_const;
+      
+      a_n = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2));
+      a_const = ao(mu_distr_2);
+      a_2 = a_n + a_const;
+      
+      % Set units and prefix from those supported
+      unit_list = unit.supportedUnits;
+      % remove the first empty unit '' from the list, because then is it
+      % possible that we add a prefix to an empty unit
+      unit_list = unit_list(2:end);
+      prefix_list = unit.supportedPrefixes;
+      a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      
+      % Evaluate the log-scale coherence of the time-series data
+      win = specwin('BH92');
+      olap = win.rov;
+      detrend = 0;
+      scale_type = 'MS';
+      
+      C = lcohere(a_1, a_2, plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type));
+      
+      stest = true;
+      
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    % </SyntaxCode>
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that (magnitude-squared coherence yunits) equals [1]
+    % 2) Check that (magnitude-squared coherence xunits) equals [Hz]
+    
+    % </AlgoDescription>
+    
+    % <AlgoCode>
+    atest = true;
+    
+    if stest
+      if ne(C.yunits, unit(''))  || ne(C.xunits, unit('Hz'))
+        atest = false;
+      end
+    else
+      atest = false;
+    end
+    % </AlgoCode>
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_18
+  
+  %% UTP_30
+  
+  % <TestDescription>
+  %
+  % Tests handling of special cases:
+  % 1) white noise produced from normal pdf, with a given mean value and
+  % sigma (distribution's 1st and 2nd orders)
+  % 2) the same noise series
+  % 3) lcohere of the white noise series
+  % 4) compares the output to unity
+  %
+  
+  % </TestDescription>
+  function result = utp_30
+    
+    % <SyntaxDescription>
+    %
+    % 1) Prepare the test tsdata:
+    %   white noise from normal distribution + offset
+    % 2) Assign a random unit
+    % 3) Prepare the test tsdata:
+    %   the same data as 1) and 2)
+    % 4) lcohere of the series
+    %
+    % </SyntaxDescription>
+    
+    % <SyntaxCode>
+    try
+      
+      % Build time-series test data
+      fs = 1;
+      nsecs = 86400;
+      sigma_distr_1 = 4.69e-12;
+      mu_distr_1 = -5.11e-14;
+      
+      % White noise
+      type = 'Normal';
+      
+      a_n = ao(plist('waveform', 'noise', ...
+        'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1));
+      a_const = ao(mu_distr_1);
+      a_1 = a_n + a_const;
+      
+      % Set units and prefix from those supported
+      unit_list = unit.supportedUnits;
+      % remove the first empty unit '' from the list, because then is it
+      % possible that we add a prefix to an empty unit
+      unit_list = unit_list(2:end);
+      prefix_list = unit.supportedPrefixes;
+      a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))]));
+      
+      % Build the second object as a copy of the first
+      a_2 = a_1;
+      
+      % Evaluate the lcohere of the time-series data
+      win = specwin('BH92');
+      olap = win.rov;
+      detrend = 0;
+      scale_type = 'C';
+      
+      C = lcohere(a_1, a_2, ...
+        plist('Win', win.type, 'order', detrend, 'type', scale_type, 'olap', olap));
+      
+      stest = true;
+      
+    catch err
+      disp(err.message)
+      stest = false;
+    end
+    % </SyntaxCode>
+    
+    % <AlgoDescription>
+    %
+    % 1) Check that calculated lcohere equals 1
+    
+    % </AlgoDescription>
+    
+    % <AlgoCode>
+    atest = true;
+    
+    if stest
+      if sum(ne(C.y, 1))
+        atest = false;
+      end
+    else
+      atest = false;
+    end
+    % </AlgoCode>
+    
+    % Return a result structure
+    result = utp_prepare_result(atest, stest, dbstack, mfilename);
+  end % END UTP_30
+  
+end