Mercurial > hg > ltpda
view testing/utp_1.1/utps/ao/utp_ao_lcohere.m @ 44:409a22968d5e default
Add unit tests
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Tue, 06 Dec 2011 18:42:11 +0100 |
parents | |
children |
line wrap: on
line source
% UTP_AO_LCOHERE a set of UTPs for the ao/lcohere method % % M Hewitson 06-08-08 % % $Id: utp_ao_lcohere.m,v 1.26 2011/07/22 12:29:58 mauro Exp $ % % <MethodDescription> % % The lcohere method of the ao class computes the lcoherence between two % time-series AOs on a log frequency axis. % % </MethodDescription> function results = utp_ao_lcohere(varargin) % Check the inputs if nargin == 0 % Some keywords class = 'ao'; mthd = 'lcohere'; results = []; disp('******************************************************'); disp(['**** Running UTPs for ' class '/' mthd]); disp('******************************************************'); % Test AOs [at1,at2,at3,at4,at5,at6] = eval(['get_test_objects_' class]); % Exception list for the UTPs: [ple1,ple2,ple3,ple4,ple5,ple6] = get_test_ples(); % Get default window from the preferences prefs = getappdata(0, 'LTPDApreferences'); defaultWinType = char(prefs.getMiscPrefs.getDefaultWindow); % Run the tests results = [results utp_01]; % getInfo call results = [results utp_02]; % Vector input (only with two objects) results = [results utp_03]; % Matrix input (not possible) results = [results utp_04]; % List input (only with two objects) results = [results utp_05]; % Test with mixed input (not possible) results = [results utp_06]; % Test history is working results = [results utp_07]; % Test the modify call works results = [results utp_08]; % Test input data shape == output data shape results = [results utp_09]; % Test output of the data results = [results utp_11(mthd, [at1 at1], ple1)]; % Test plotinfo doesn't disappear results = [results utp_12]; % Test basic symmetry properties of lcohere (C) results = [results utp_13]; % Test basic symmetry properties of lcohere (MS) results = [results utp_14]; % Test basic symmetry properties of lcohere (C) results = [results utp_15]; % Test basic symmetry properties of lcohere (MS) results = [results utp_16]; % Test basic relationship (MS) <-> (C) results = [results utp_17]; % Test units handling: complex cohere results = [results utp_18]; % Test units handling: magnitude-squared cohere results = [results utp_30]; % Special cases: same input disp('Done.'); disp('******************************************************'); elseif nargin == 1 % Check for UTP functions if strcmp(varargin{1}, 'isutp') results = 1; else results = 0; end else error('### Incorrect inputs') end %% UTP_01 % <TestDescription> % % Tests that the getInfo call works for this method. % % </TestDescription> function result = utp_01 % <SyntaxDescription> % % Test that the getInfo call works for no sets, all sets, and each set % individually. % % </SyntaxDescription> try % <SyntaxCode> % Call for no sets io(1) = eval([class '.getInfo(''' mthd ''', ''None'')']); % Call for all sets io(2) = eval([class '.getInfo(''' mthd ''')']); % Call for each set for kk=1:numel(io(2).sets) io(kk+2) = eval([class '.getInfo(''' mthd ''', ''' io(2).sets{kk} ''')']); end % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that getInfo call returned an minfo object in all cases. % 2) Check that all plists have the correct parameters. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % check we have minfo objects if isa(io, 'minfo') %%% SET 'None' if ~isempty(io(1).sets), atest = false; end if ~isempty(io(1).plists), atest = false; end %%% Check all Sets if ~any(strcmpi(io(2).sets, 'Default')), atest = false; end if numel(io(2).plists) ~= numel(io(2).sets), atest = false; end %%%%%%%%%% SET 'Default' if io(3).plists.nparams ~= 10, atest = false; end % Check key if ~io(3).plists.isparam('kdes'), atest = false; end if ~io(3).plists.isparam('jdes'), atest = false; end if ~io(3).plists.isparam('lmin'), atest = false; end if ~io(3).plists.isparam('win'), atest = false; end if ~io(3).plists.isparam('olap'), atest = false; end if ~io(3).plists.isparam('type'), atest = false; end if ~io(3).plists.isparam('order'), atest = false; end if ~io(3).plists.isparam('psll'), atest = false; end if ~io(3).plists.isparam('times'), atest = false; end if ~io(3).plists.isparam('split'), atest = false; end % Check default value if ~isequal(io(3).plists.find('kdes'), 100), atest = false; end if ~isequal(io(3).plists.find('jdes'), 1000), atest = false; end if ~isequal(io(3).plists.find('lmin'), 0), atest = false; end if ~strcmpi(io(3).plists.find('win'), defaultWinType), atest = false; end if ~isequal(io(3).plists.find('olap'), -1), atest = false; end if ~isequal(io(3).plists.find('type'), 'C'), atest = false; end if ~isequal(io(3).plists.find('order'), 0), atest = false; end if ~isequal(io(3).plists.find('psll'), 200), atest = false; end if ~isEmptyDouble(io(3).plists.find('times')), atest = false; end if ~isEmptyDouble(io(3).plists.find('split')), atest = false; end % Check options if ~isequal(io(3).plists.getOptionsForParam('kdes'), {100}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('jdes'), {1000}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('lmin'), {0}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('win'), specwin.getTypes), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('olap'), {-1}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('type'), {'C', 'MS'}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('order'), {-1 0 1 2 3 4 5 6 7 8 9}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('psll'), {200}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('times'), {[]}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('split'), {[]}), atest = false; end end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_01 %% UTP_02 % <TestDescription> % % Tests that the lcohere method works with a vector of AOs as input. (only % with two objects in the vector) % % </TestDescription> function result = utp_02 % <SyntaxDescription> % % Test that the lcohere method works for a vector of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> avec = [at1 at5]; out = lcohere(avec); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the number of elements in 'out' is equal to 1. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check we have the correct number of outputs if numel(out) ~= 1, atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_02 %% UTP_03 % <TestDescription> % % Test that the lcohere method doesn't work for a matrix of AOs as input. % % </TestDescription> function result = utp_03 % <SyntaxDescription> % % Test that the lcohere method doesn't work for a matrix of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> amat = [at1 at5; at5 at6]; out = lcohere(amat); % </SyntaxCode> stest = false; catch err stest = true; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_03 %% UTP_04 % <TestDescription> % % Tests that the lcohere method works with a list of AOs as input. % % </TestDescription> function result = utp_04 % <SyntaxDescription> % % Test that the lcohere method works for a list of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> out = lcohere(at1,at5); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the number of elements in 'out' is equal to 1. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check we have the correct number of outputs if numel(out) ~= 1, atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_04 %% UTP_05 % <TestDescription> % % Tests that the lcohere method doesn't work with a mix of different % shaped AOs as input. % % </TestDescription> function result = utp_05 % <SyntaxDescription> % % Test that the lcohere method doesn't work with an input of matrices % and vectors and single AOs. % % </SyntaxDescription> try % <SyntaxCode> out = lcohere(at1,[at5 at6],at5,[at5 at1; at6 at1],at6); stest = false; % </SyntaxCode> catch err stest = true; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_05 %% UTP_06 % <TestDescription> % % Tests that the lcohere method properly applies history. % % </TestDescription> function result = utp_06 % <SyntaxDescription> % % Test that the result of applying the lcohere method can be processed back % to an m-file. % % </SyntaxDescription> try % <SyntaxCode> out = lcohere(at5,at6); mout = rebuild(out); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the last entry in the history of 'out' corresponds to % 'lcohere'. % 2) Check that the re-built object is the same as 'out'. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check the last step in the history of 'out' if ~strcmp(out.hist.methodInfo.mname, 'lcohere'), atest = false; end % Check the re-built object if ~eq(mout, out, ple2), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_06 %% UTP_07 % <TestDescription> % % Tests that the lcohere method can not modify the input AO. % % </TestDescription> function result = utp_07 % <SyntaxDescription> % % Test that the lcohere method can not modify the input AO. % The method must throw an error for the modifier call. % % </SyntaxDescription> try % <SyntaxCode> % copy at1 to work with ain = ao(at1); % modify ain ain.lcohere(at5); % </SyntaxCode> stest = false; catch err stest = true; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_07 %% UTP_08 % <TestDescription> % % Test the shape of the output. % % </TestDescription> function result = utp_08 % <SyntaxDescription> % % Test that the lcohere method keeps the data shape of the input object. The % input AO must be an AO with row data and an AO with column data. % % </SyntaxDescription> try % <SyntaxCode> out1 = lcohere(at5, at6); out2 = lcohere(at6, at5); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the shpe of the output data doesn't change. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check the shape of the output data if size(out1.data.y, 2) ~= 1, atest = false; end if size(out2.data.y, 1) ~= 1, atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_08 %% UTP_09 % <TestDescription> % % Check that the lcohere method pass back the output objects to a list of % output variables or to a single variable. % % </TestDescription> function result = utp_09 % <SyntaxDescription> % % This test is not longer necessary because the cohere method pass back % always only one object. % % </SyntaxDescription> try % <SyntaxCode> % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_09 %% UTP_12 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) complex lcoherence of the white noise series % 4) compare C(x,y) with conj(C(y,x)) % 5) compare C(x,x) and C(y,y) with 1 % % </TestDescription> function result = utp_12 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) complex log-scale coherence of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n1 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_n2 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n1 + a_const + a_wave; a_2 = a_n2 + a_wave; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the complex coherence of the time-series data win_list = specwin.getTypes; win = utils.math.randelement(win_list,1); win = win{1}; if strcmp(win, 'Kaiser') win = specwin(win, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win, 1); end olap = win.rov; detrend = 0; scale_type = 'C'; C12 = lcohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); C21 = lcohere(a_2, a_1, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); C21_cc = conj(C21); C11 = lcohere(a_1, a_1, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); C22 = lcohere(a_2, a_2, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that C(x,y) equals conj(C(y,x)) % 2) Check that C(x,x) equals 1 % 2) Check that C(y,y) equals 1 % </AlgoDescription> % <AlgoCode> atest = true; tol = 1e-12; if stest if ~eq(C12.data, C21_cc.data, 'dy') || ... any(abs(C11.y-ones(size(C11.y))) > tol) || ... any(abs(C22.y-ones(size(C22.y))) > tol) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_12 %% UTP_13 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) magnitude-squared log-scale coherence of the white noise series % 4) compare C(x,y) with C(y,x) % 5) compare C(x,x) and C(y,y) with 1 % % </TestDescription> function result = utp_13 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) magnitude-squared log-scale coherence of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n1 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_n2 = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n1 + a_const + a_wave; a_2 = a_n2 + a_wave; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the magnitude-squared coherence of the time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; if strcmp(win_type, 'Kaiser') win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win_type, 1); end olap = win.rov; detrend = 0; scale_type = 'MS'; C12 = lcohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); C21 = lcohere(a_2, a_1, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); C11 = lcohere(a_1, a_1, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); C22 = lcohere(a_2, a_2, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that C(x,y) equals C(y,x) % 1) Check that C(x,x) equals 1 % 1) Check that C(y,y) equals 1 % </AlgoDescription> % <AlgoCode> atest = true; tol = 1e-12; if stest if ~eq(C12.data, C21.data) || ... any(abs(C11.y - ones(size(C11.y))) > tol) || ... any(abs(C22.y - ones(size(C22.y))) > tol) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_13 %% UTP_14 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) complex log-scale coherence of the combination of white noise series % 4) compare C(x,y) with 1 % % </TestDescription> function result = utp_14 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) complex log-scale coherence of the combination of noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); % Sinusoidal signal a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n + a_wave; % Linear combination (totally correlated time series) a_2 = a_1 + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the complex coherence of the time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; if strcmp(win_type, 'Kaiser') win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win_type, 1); end olap = win.rov; detrend = 0; scale_type = 'C'; C = lcohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that the complex coherence equals 1 % </AlgoDescription> % <AlgoCode> atest = true; TOL = 1e-12; if stest if any(abs((C.y - 1)) > TOL) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_14 %% UTP_15 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) magnitude-squared log-scale coherence of the combination of white noise series % 4) compare C(x,y) with 1 % % </TestDescription> function result = utp_15 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) magnitude-squared log-scale coherence of the combination of noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); % Sinusoidal signal a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n + a_wave; % Linear combination (totally correlated time series) a_2 = a_1 + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the complex coherence of the time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; if strcmp(win_type, 'Kaiser') win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win_type, 1); end olap = win.rov; detrend = 0; scale_type = 'MS'; C = lcohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that the magnitude-squared coherence equals 1 % </AlgoDescription> % <AlgoCode> atest = true; if stest if ~eq(C.y, ones(size(C.y))) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_15 %% UTP_16 % <TestDescription> % % Tests symmetry properties of complex-coherence: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) magnitude-squared log-scale coherence M of the combination of white noise series % 4) complex log-scale coherence C of the combination of white noise series % 5) compare abs(C)^2 with M % % </TestDescription> function result = utp_16 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) magnitude-squared log-scale coherence of the combination of noise % 6) complex log-scale coherence of the combination of noise % % </SyntaxDescription> % <SyntaxCode> try % Array of parameters to pick from fs_list = [0.1;1;10]; nsecs_list = [100:100:10000]'; sigma_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; mu_distr_list = [1e-6 2e-3 0.25 1:0.1:10]'; % Build time-series test data % Picks the values at random from the list fs = utils.math.randelement(fs_list, 1); nsecs = utils.math.randelement(nsecs_list, 1); sigma_distr = utils.math.randelement(sigma_distr_list, 1); mu_distr = utils.math.randelement(mu_distr_list, 1); f = [1:5] / 100 * fs; A = sigma_distr + sigma_distr*rand(1,1); phi = 0 + 2*pi*rand(1,1); % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr)); a_const = ao(mu_distr); % Sinusoidal signal a_wave = ao(plist('waveform', 'sine-wave', ... 'fs', fs, 'nsecs', nsecs, 'f', f, 'A', A, 'phi', phi)); a_1 = a_n + a_wave; % Linear combination (totally correlated time series) a_2 = a_1 + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the complex coherence of the time-series data win_list = specwin.getTypes; win_type = utils.math.randelement(win_list(~strcmpi(win_list, 'levelledhanning')), 1); win_type = win_type{1}; if strcmp(win_type, 'Kaiser') win = specwin(win_type, 1, find(ao.getInfo('psd').plists, 'psll')); else win = specwin(win_type, 1); end olap = win.rov; detrend = 0; M = lcohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', 'MS')); C = lcohere(a_1, a_2, ... plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', 'C')); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that the magnitude-squared coherence equals the square % modulus of the complex coherence % </AlgoDescription> % <AlgoCode> atest = true; TOL = 1e-15; if stest if any(abs(M.y - abs(C.y).^2) > TOL) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_16 %% UTP_17 % <TestDescription> % % Tests handling of units: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) complex log-scale coherence of the white noise series % 4) compares the units of the input and output % % </TestDescription> function result = utp_17 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) complex cohere of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Build time-series test data fs = 1; nsecs = 86400; sigma_distr_1 = 4.69e-12; mu_distr_1 = -5.11e-14; sigma_distr_2 = 6.04e-9; mu_distr_2 = 1.5e-10; % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); a_const = ao(mu_distr_1); a_1 = a_n + a_const; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); a_const = ao(mu_distr_2); a_2 = a_n + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the log-scale coherence of the time-series data win = specwin('BH92'); olap = win.rov; detrend = 0; scale_type = 'C'; C = lcohere(a_1, a_2, plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that (complex coherence yunits) equals [1] % 2) Check that (complex coherence xunits) equals [Hz] % </AlgoDescription> % <AlgoCode> atest = true; if stest if ne(C.yunits, unit('')) || ne(C.xunits, unit('Hz')) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_17 %% UTP_18 % <TestDescription> % % Tests handling of units: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 3) magnitude-squared log-scale coherence of the white noise series % 4) compares the units of the input and output % % </TestDescription> function result = utp_18 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % white noise from normal distribution + offset % 4) Assign a random unit % 5) magnitude-squared cohere of the white noise % % </SyntaxDescription> % <SyntaxCode> try % Build time-series test data fs = 1; nsecs = 86400; sigma_distr_1 = 4.69e-12; mu_distr_1 = -5.11e-14; sigma_distr_2 = 6.04e-9; mu_distr_2 = 1.5e-10; % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); a_const = ao(mu_distr_1); a_1 = a_n + a_const; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_2)); a_const = ao(mu_distr_2); a_2 = a_n + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); a_2.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Evaluate the log-scale coherence of the time-series data win = specwin('BH92'); olap = win.rov; detrend = 0; scale_type = 'MS'; C = lcohere(a_1, a_2, plist('Win', win.type, 'olap', olap, 'order', detrend, 'type', scale_type)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that (magnitude-squared coherence yunits) equals [1] % 2) Check that (magnitude-squared coherence xunits) equals [Hz] % </AlgoDescription> % <AlgoCode> atest = true; if stest if ne(C.yunits, unit('')) || ne(C.xunits, unit('Hz')) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_18 %% UTP_30 % <TestDescription> % % Tests handling of special cases: % 1) white noise produced from normal pdf, with a given mean value and % sigma (distribution's 1st and 2nd orders) % 2) the same noise series % 3) lcohere of the white noise series % 4) compares the output to unity % % </TestDescription> function result = utp_30 % <SyntaxDescription> % % 1) Prepare the test tsdata: % white noise from normal distribution + offset % 2) Assign a random unit % 3) Prepare the test tsdata: % the same data as 1) and 2) % 4) lcohere of the series % % </SyntaxDescription> % <SyntaxCode> try % Build time-series test data fs = 1; nsecs = 86400; sigma_distr_1 = 4.69e-12; mu_distr_1 = -5.11e-14; % White noise type = 'Normal'; a_n = ao(plist('waveform', 'noise', ... 'type', type, 'fs', fs, 'nsecs', nsecs, 'sigma', sigma_distr_1)); a_const = ao(mu_distr_1); a_1 = a_n + a_const; % Set units and prefix from those supported unit_list = unit.supportedUnits; % remove the first empty unit '' from the list, because then is it % possible that we add a prefix to an empty unit unit_list = unit_list(2:end); prefix_list = unit.supportedPrefixes; a_1.setYunits(unit([cell2mat(utils.math.randelement(prefix_list,1)) cell2mat(utils.math.randelement(unit_list,1))])); % Build the second object as a copy of the first a_2 = a_1; % Evaluate the lcohere of the time-series data win = specwin('BH92'); olap = win.rov; detrend = 0; scale_type = 'C'; C = lcohere(a_1, a_2, ... plist('Win', win.type, 'order', detrend, 'type', scale_type, 'olap', olap)); stest = true; catch err disp(err.message) stest = false; end % </SyntaxCode> % <AlgoDescription> % % 1) Check that calculated lcohere equals 1 % </AlgoDescription> % <AlgoCode> atest = true; if stest if sum(ne(C.y, 1)) atest = false; end else atest = false; end % </AlgoCode> % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_30 end