Mercurial > hg > ltpda
diff m-toolbox/classes/@ao/diff.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ao/diff.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,324 @@ +% DIFF differentiates the data in AO. +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: DIFF differentiates the data in AO. The result is a data +% series the same length as the input series. +% In case of method 'diff' computes the difference between two samples, in which +% case the resulting time object has the length of the input +% series -1 sample. +% CALL: bs = diff(a1,a2,a3,...,pl) +% bs = diff(as,pl) +% bs = as.diff(pl) +% +% INPUTS: aN - input analysis objects +% as - input analysis objects array +% pl - input parameter list +% +% OUTPUTS: bs - array of analysis objects, one for each input, +% containing the differentiated data +% +% <a href="matlab:utils.helper.displayMethodInfo('ao', 'diff')">Parameters Description</a> +% +% REFERENCES: +% [1] L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative +% estimation in LISA Pathfinder data reduction, +% <a +% href="matlab:web('http://www.iop.org/EJ/abstract/0264-9381/26/9/094013/','-browser')">Class. Quantum Grav. 26 (2009) 094013.</a> +% [2] L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative +% estimation in LISA Pathfinder data reduction +% <a href="matlab:web('http://arxiv.org/abs/0903.0324v1','-browser')">http://arxiv.org/abs/0903.0324v1</a> +% +% VERSION: $Id: diff.m,v 1.36 2011/08/03 19:18:56 adrien Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +% PARAMETERS: method - the method to use: [default: '3POINT'] +% 'diff' - like MATLABs diff +% compute difference between each two samples +% xaxis will be integers from 1 to length +% of resulting object +% '2POINT' - 2 point derivative computed as +% [y(i+1)-y(i)]./[x(i+1)-x(i)]. +% '3POINT' - 3 point derivative. Compute derivative +% at i as [y(i+1)-y(i-1)] / [x(i+1)-x(i-1)]. +% For i==1, the output is computed as +% [y(2)-y(1)]/[x(2)-x(1)]. The last sample +% is computed as [y(N)-y(N-1)]/[x(N)-x(N-1)]. +% '5POINT' - 5 point derivative. Compute derivative dx +% at i as +% [-y(i+2)+8*y(i+1)-8*y(i-1)+y(i-2)] / +% [3*(x(i+2)-x(i-2))]. +% For i==1, the output is computed as +% [y(2)-y(1)]/[x(2)-x(1)]. The last sample +% is computed as [y(N)-y(N-1)]/[x(N)-x(N-1)]. +% 'ORDER2' - Compute derivative using a 2nd order +% method. +% 'ORDER2SMOOTH' - Compute derivative using a 2nd order +% method with a parabolic fit to 5 +% consecutive samples. +% 'filter' - applies an IIR filter built from a +% single pole at the chosen frequency. The +% filter is applied forwards and backwards +% (filtfilt) to achieve the desired f^2 +% response. This only works for time-series +% AOs. For this method, you can specify the +% pole frequency with an additional parameter +% 'f0' [default: 1/Nsecs] +% 'FPS' - Calculates five points derivative using +% utils.math.fpsder function. If you call +% with this oprtion you may add also the +% parameters: +% 'ORDER' derivative order, supperted +% values are: +% 'ZERO', 'FIRST', 'SECOND' +% 'COEFF' coefficient used for the +% derivation. Refers to the fpsder help +% for further details. +% +% + +function varargout = diff(varargin) + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + import utils.const.* + utils.helper.msg(msg.PROC3, 'running %s/%s', mfilename('class'), mfilename); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all AOs and plists + [as, ao_invars] = utils.helper.collect_objects(varargin(:), 'ao', in_names); + pl = utils.helper.collect_objects(varargin(:), 'plist', in_names); + + % Decide on a deep copy or a modify + bs = copy(as, nargout); + + % combine plists + pl = parse(pl, getDefaultPlist()); + + % Extract method + method = find(pl, 'method'); + + for jj = 1:numel(bs) + + % Diff can't work for cdata objects since we need x data + if isa(bs(jj).data, 'cdata') + error('### diff doesn''t work with cdata AOs since we need an x-data vector.'); + end + + % Compute derivative with selected method + switch lower(method) + case 'diff' + yunit = bs(jj).yunits; + y = bs(jj).y; + x = bs(jj).x; + newX = x(1:end-1); % cut the last sample from the time series to make x and y same length + dy = diff(y); + bs(jj).data.setY(dy); + bs(jj).data.setX(newX); + bs(jj).setYunits(yunit); + case '2point' + x = bs(jj).data.getX; + dx = diff(x); + y = bs(jj).data.getY; + dy = diff(y); + z = dy./dx; + bs(jj).data.setY(z); + bs(jj).data.setX((x(1:end-1)+x(2:end))/2); + bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); + case '3point' + x = bs(jj).data.getX; + dx = diff(x); + y = bs(jj).data.getY; + z = zeros(size(y)); + z(2:end-1) = (y(3:end)-y(1:end-2)) ./ (dx(2:end)+dx(1:end-1)); + z(1) = (y(2)-y(1)) ./ (dx(1)); + z(end) = 2*z(end-1)-z(end-2); + bs(jj).data.setY(z); + bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); + case '5point' + x = bs(jj).data.getX; + dx = diff(x); + y = bs(jj).data.getY; + z = zeros(size(y)); + z(1) = (y(2)-y(1)) ./ (dx(1)); + z(2) = (y(3)-y(1))./(dx(2)+dx(1)); + z(3:end-2) = (-y(5:end) + 8.*y(4:end-1) - 8.*y(2:end-3) + y(1:end-4)) ./ (3.*(x(5:end)-x(1:end-4))); + z(end-1) = 2*z(end-2)-z(end-3); + z(end) = 2*z(end-1)-z(end-2); + bs(jj).data.setY(z); + bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); + case 'order2' + x = bs(jj).data.getX; + dx = diff(x); + y = bs(jj).data.getY; + z = zeros(size(y)); + m = length(y); + % y'(x1) + z(1) = (1/dx(1)+1/dx(2))*(y(2)-y(1))+... + dx(1)/(dx(1)*dx(2)+dx(2)^2)*(y(1)-y(3)); + % y'(xm) + z(m) = (1/dx(m-2)+1/dx(m-1))*(y(m)-y(m-1))+... + dx(m-1)/(dx(m-1)*dx(m-2)+dx(m-2)^2)*(y(m-2)-y(m)); + % y'(xi) (i>1 & i<m) + dx1 = repmat(dx(1:m-2),1,1); + dx2 = repmat(dx(2:m-1),1,1); + y1 = y(1:m-2); y2 = y(2:m-1); y3 = y(3:m); + z(2:m-1) = 1./(dx1.*dx2.*(dx1+dx2)).*... + (-dx2.^2.*y1+(dx2.^2-dx1.^2).*y2+dx1.^2.*y3); + bs(jj).data.setY(z); + bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); + case 'order2smooth' + x = bs(jj).data.getX; + y = bs(jj).data.getY; + dx = diff(x); + m = length(y); + if max(abs(diff(dx)))>sqrt(eps(max(abs(dx)))) + error('### The x-step must be constant for method ''ORDER2SMOOTH''') + elseif m<5 + error('### Length of y must be at least 5 for method ''ORDER2SMOOTH''.') + end + h = mean(dx); + z = zeros(size(y)); + % y'(x1) + z(1) = sum(y(1:5).*[-54; 13; 40; 27; -26])/70/h; + % y'(x2) + z(2) = sum(y(1:5).*[-34; 3; 20; 17; -6])/70/h; + % y'(x{m-1}) + z(m-1) = sum(y(end-4:end).*[6; -17; -20; -3; 34])/70/h; + % y'(xm) + z(m) = sum(y(end-4:end).*[26; -27; -40; -13; 54])/70/h; + % y'(xi) (i>2 & i<(N-1)) + Dc = [2 1 0 -1 -2]; + tmp = convn(Dc,y)/10/h; + z(3:m-2) = tmp(5:m); + bs(jj).data.setY(z); + bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); + case 'filter' + error('### Comming with release 2.5'); + case 'fps' + order = find(pl, 'ORDER'); + coeff = find(pl, 'COEFF'); + x = bs(jj).data.getX; + dx = x(2)-x(1); + fs = 1/dx; + y = bs(jj).data.getY; + params = struct('ORDER', order, 'COEFF', coeff, 'FS', fs); + z = utils.math.fpsder(y, params); + bs(jj).data.setY(z); + % setting units + switch lower(order) + case 'first' + bs(jj).data.setYunits(bs(jj).data.yunits./bs(jj).data.xunits); + case 'second' + bs(jj).data.setYunits(bs(jj).data.yunits.*bs(jj).data.xunits.^(-2)); + end + otherwise + error('### Unknown method for computing the derivative.'); + end + + % name for this object + bs(jj).name = sprintf('diff(%s)', ao_invars{jj}); + % add history + bs(jj).addHistory(getInfo('None'), pl, ao_invars(jj), bs(jj).hist); + end + + % Clear the errors since they don't make sense anymore + clearErrors(bs); + + % Set output + if nargout == numel(bs) + % List of outputs + for ii = 1:numel(bs) + varargout{ii} = bs(ii); + end + else + % Single output + varargout{1} = bs; + end +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ao', 'ltpda', utils.const.categories.sigproc, '$Id: diff.m,v 1.36 2011/08/03 19:18:56 adrien Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- + +function plout = getDefaultPlist() + persistent pl; + if exist('pl', 'var')==0 || isempty(pl) + pl = buildplist(); + end + plout = pl; +end + +function pl = buildplist() + pl = plist(); + + % Method + p = param({'method',['The method to use. Choose between:<ul>', ... + '' ... + '<li>''2POINT'' - 2 point derivative computed as [y(i+1)-y(i)]./[x(i+1)-x(i)]', ... + '</li>' ... + '<li>''3POINT'' - 3 point derivative. Compute derivative dx at i as <br>', ... + '<tt>[y(i+1)-y(i-1)] / [x(i+1)-x(i-1)]</tt><br>', ... + 'For <tt>i==1</tt>, the output is computed as <tt>[y(2)-y(1)]/[x(2)-x(1)]</tt>.<br>', ... + 'The last sample is computed as <tt>[y(N)-y(N-1)]/[x(N)-x(N-1)]</tt>', ... + '</li>' ... + '<li>''5POINT'' - 5 point derivative. Compute derivative dx at i as <br>', ... + '<tt>[-y(i+2)+8*y(i+1)-8*y(i-1)+y(i-2)] / [3*(x(i+2)-x(i-2))]</tt><br>', ... + 'For <tt>i==1</tt>, the output is computed as <tt>[y(2)-y(1)]/[x(2)-x(1)]</tt><br>', ... + 'The last sample is computed as <tt>[y(N)-y(N-1)]/[x(N)-x(N-1)]</tt>', ... + '</li>' ... + '<li>''ORDER2'' - Compute derivative using a 2nd order method', ... + '</li>' ... + '<li>''ORDER2SMOOTH'' - Compute derivative using a 2nd order method<br>', ... + 'with a parabolic fit to 5 consecutive samples', ... + '</li>' ... + '<li>''filter'' - applies an IIR filter built from a single pole at the chosen frequency.<br>', ... + 'The filter is applied forwards and backwards (filtfilt) to achieve the desired f^2<br>', ... + 'response. This only works for time-series AOs.<br>', ... + 'For this method, you can specify the pole frequency with an additional parameter ''F0'' (see below):', ... + '</li>'... + '<li>''FPS'' - Calculates five points derivative using utils.math.fpsder.<br>', ... + 'When calling with this option you may add also the parameters ''ORDER'' (see below)<br>', ... + 'and ''COEFF'' (see below)' ... + '</li>' ... + ]}, {1, {'2POINT', '3POINT', '5POINT', 'ORDER2', 'ORDER2SMOOTH', 'FILTER', 'FPS'}, paramValue.SINGLE}); + pl.append(p); + + % F0 + p = param({'f0','The pole frequency for the ''filter'' method.'}, {1, {'1/Nsecs'}, paramValue.OPTIONAL}); + pl.append(p); + + % Order + p = param({'ORDER','Derivative order'}, {1, {'ZERO', 'FIRST', 'SECOND'}, paramValue.SINGLE}); + pl.append(p); + + % Coeff + p = param({'COEFF',['Coefficient used for the derivation. <br>', ... + 'Refer to the <a href="matlab:doc(''utils.math.fpsder'')">fpsder help</a> for further details']}, paramValue.EMPTY_DOUBLE); + pl.append(p); + +end +