Mercurial > hg > ltpda
diff m-toolbox/classes/@ssm/kalman.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/m-toolbox/classes/@ssm/kalman.m Wed Nov 23 19:22:13 2011 +0100 @@ -0,0 +1,327 @@ +% KALMAN applies Kalman filtering to a discrete ssm with given i/o +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% +% +% DESCRIPTION: KALMAN applies Kalman filtering to a discrete ssm with +% given i/o. +% CALL: [mat_out pl_out] = kalman(sys, plist_inputs) +% +% INPUTS: +% - sys, (array of) ssm object +% +% OUTPUTS: +% _ mat_out contains specified returned aos +% _ pl_out contains 'lastX', the last state position +% +% <a href="matlab:utils.helper.displayMethodInfo('ssm', 'kalman')">Parameters Description</a> +% +% VERSION: $Id: kalman.m,v 1.51 2011/04/17 21:28:05 adrien Exp $ +% +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +function varargout = kalman(varargin) + + %% starting initial checks + + % use the caller is method flag + callerIsMethod = utils.helper.callerIsMethod; + + % Check if this is a call for parameters + if utils.helper.isinfocall(varargin{:}) + varargout{1} = getInfo(varargin{3}); + return + end + + utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]); + + % Collect input variable names + in_names = cell(size(varargin)); + for ii = 1:nargin,in_names{ii} = inputname(ii);end + + % Collect all SSMs and plists + [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names); + [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist'); + if ~isempty(rest) + pl = combine(pl, plist(rest{:})); + end + pl = combine(pl, getDefaultPlist()); + + %% retrieve system infos + if ~all(sys.isnumerical) + error(['error because system ', sys.name, ' is not numerical']); + end + timestep = sys.timestep; + if timestep==0 + error('timestep should not be 0 in simulate!!') + end + if ~callerIsMethod + inhist = sys(:).hist; + end + if pl.isparam('white noise variable names') + error('The noise option used must be split between "covariance" and "cpsd". "noise variable names" does not exist anymore!') + end + + %% display time ? + displayTime = find(pl, 'displayTime'); + + %% initial state + ssini = find(pl,'ssini'); + if isempty(ssini) + ssini = cell(sys.Nss,1); + for i=1:sys.Nss + ssini{i} = zeros(sys.sssizes(i),1); + end + end + ssSizesIni = sys.statesizes; + ssini = ssm.blockMatFusion(ssini,ssSizesIni,1); + + %% modifying system's ordering + if find(pl, 'reorganize') + sys = sys.reorganize(pl, 'set', 'for kalman', 'internal', 'internal'); + end + sys_est = sys(1); + sys_exp = sys(2); + + %% getting system's i/o sizes + Naos_in = sys_est.inputsizes(1); + Nnoise = sys_est.inputsizes(2); + Nconstants = sys_est.inputsizes(3); + NstatesOut = sys_est.outputsizes(1); + NoutputsOut = sys_est.outputsizes(2); + Nknown = sys_exp.outputsizes(2); + + aos_in = find(pl, 'aos'); + known_out = find(pl, 'known outputs'); + constants_in = find(pl, 'constants'); + cov_in = find(pl, 'covariance'); + cpsd_in = find(pl, 'CPSD'); + noise_in = blkdiag(cov_in, cpsd_in/(timestep*2)); + + if numel(aos_in)~=Naos_in + error(['There are ' num2str(numel(aos_in)) ' input aos and ' num2str(Naos_in) ' corresponding inputs indexed.' ]) + elseif numel(known_out)~=Nknown + error(['There are ' num2str(numel(known_out)) ' known output aos and ' num2str(Nknown) ' corresponding inputs indexed.' ]) + elseif numel(diag(noise_in))~=Nnoise + error(['There are ' num2str(numel(noise_in)) ' input noise variances and ' num2str(Naos_in) ' corresponding inputs indexed.' ]) + elseif numel(constants_in)~=Nconstants + error(['There are ' num2str(numel(constants_in)) ' input constants and ' num2str(Nconstants) ' corresponding inputs indexed.' ]) + end + [U1,S1,V1] = svd(noise_in.'); %#ok<NASGU> + noise_mat = U1*sqrt(S1)/sqrt(timestep*2); + + A = sys_est.amats{1,1}; + Cstates = sys_est.cmats{1,1}; + Coutputs = sys_est.cmats{2,1}; + Baos = sys_est.bmats{1,1}; + Daos = sys_est.dmats{2,1}; + Bnoise = sys_est.bmats{1,2}*noise_mat; + % Dnoise = sys_est.dmats{1,2}*noise_mat; + Bcst = sys_est.bmats{1,3}; + Dcst = sys_est.dmats{2,3}; + + CoutputsK = sys_exp.cmats{2,1}; + DaosK = sys_exp.dmats{2,1}; + DnoiseK = sys_exp.dmats{2,2}*noise_mat; + DcstK = sys_exp.dmats{2,3}; + + %% getting correct number of samples + Nsamples = find(pl, 'Nsamples'); + f0 = 1/timestep; + for i=1:Naos_in + Nsamples = min(Nsamples,length(aos_in(i).y)); + try + if ~(f0==aos_in(i).fs) + str = ['WARNING : ssm frequency is ',num2str(f0),... + ' but sampling frequency of ao named ',... + aos_in(i).name, ' is ', num2str(aos_in(i).fs) ]; + utils.helper.msg(utils.const.msg.MNAME, str); + end + end + % maybe tdata should be retrieved and verified to be equal, rather than this. + end + for i=1:Nknown + Nsamples = min(Nsamples,length(known_out(i).y)); + try + if ~(f0==known_out(i).fs) + str = ['WARNING : ssm frequency is ',num2str(f0),... + ' but sampling frequency of ao named ',... + aos_in(i).name, ' is ', num2str(aos_in(i).fs) ]; + utils.helper.msg(utils.const.msg.MNAME, str); + end + end + % maybe tdata should be retrieved and verified to be equal, rather than this. + end + if Nsamples == inf % case there is no input! + display('warning : no input providing simulation duration is available!!') + Nsamples = 0; + end + + %% evaluating Kalman feedback K, innovation gain M, state covariance P, output covariance Z + % given Q and R (process and measurement noise covariances) + Qn = Bnoise*noise_in*transpose(Bnoise); + Qn = (Qn + 1e-10*norm(Qn)*eye(size(Qn))); + Rn = DnoiseK*noise_in*transpose(DnoiseK); + Rn = Rn + 1e-10*norm(Rn)*eye(size(Rn)); + % Nn = Bnoise*noise_in*transpose(Dnoise); + P = eye(size(A))*1e20; + for i=1:10000 + P = A*P*A'+Qn; + K = P*CoutputsK'*(CoutputsK*P*CoutputsK'+Rn)^-1; + P = (eye(size(A)) - K*CoutputsK)*P; + end + Z = Coutputs*P*Coutputs' + Rn; + + %% constant vector + constants_vectX = Bcst*constants_in; + constants_vectY = Dcst*constants_in; + constants_vectYKnown = DcstK*constants_in; + + %% ao vector + aos_vect = zeros(Naos_in, Nsamples); + for j = 1:Naos_in + aos_vect(j,:) = aos_in(j).y(1:Nsamples).'; + end + Y_in = zeros(Nknown, Nsamples); + for j=1:Nknown + Y_in(j,:) = reshape( known_out(j).y(1:Nsamples), 1, [] ).'; + end + + %% rewriting fields to ssm/doSimulate + + A_kalman = A - K*Coutputs*A; + Baos_kalman = [ Baos - K*CoutputsK*Baos - K*DaosK K]; + aos_vect_kalman = [aos_vect; Y_in ]; + Bcst_kalman = constants_vectX - K*constants_vectYKnown - K*CoutputsK*constants_vectX; + Coutputs_kalman = [Cstates ; Coutputs]; + Dcst_kalman = [zeros(size(Cstates,1),1) ; constants_vectY]; + Daos_kalman = [... + zeros(size(Cstates,1), size(Daos,2)) zeros(size(Cstates,1), size(K,2)) ;... + Daos zeros(size(Daos,1), size(K,2))]; + Cstates_kalman = zeros(0, size(A,2)); + Bnoise_kalman = zeros(size(A,1), 0); + Dnoise_kalman = zeros(size(Coutputs_kalman,1), 0); + + %% call to doSimulate + doTerminate = false; + terminationCond = false; + forceComplete = false; + + [x, y, lastX] = ssm.doSimulate(ssini, Nsamples-1, ... + A_kalman, Baos_kalman, Coutputs_kalman, Cstates_kalman, Daos_kalman, Bnoise_kalman, Dnoise_kalman, ... + Bcst_kalman, Dcst_kalman, aos_vect_kalman, doTerminate, terminationCond, displayTime, timestep, forceComplete); + + y = [Coutputs_kalman*lastX y]; + + %% saving in aos + fs = 1/timestep; + isysStr = sys.name; + tini = find(pl, 'tini'); + if isa(tini,'double') + tini = time(tini); + end + + ao_out = ao.initObjectWithSize(1, NoutputsOut + NstatesOut); + for ii=1:NstatesOut + ao_out(ii).setData(tsdata( y(ii,:), fs )); + ao_out(ii).setName(['kalman estimate of ' sys_est.outputs(1).ports(ii).name]); + ao_out(ii).setXunits('s'); + ao_out(ii).setYunits(sys_est.outputs(1).ports(ii).units); + ao_out(ii).setDescription(... + ['Kalman estimate for ' isysStr, ' : ', sys_est.outputs(1).ports(ii).name,... + ' ' sys_est.outputs(1).ports(ii).description]); + ao_out(ii).setT0(tini); + end + for ii=1:NoutputsOut + ao_out(NstatesOut+ii).setData(tsdata( y(NstatesOut+ii,:), fs )); + ao_out(NstatesOut+ii).setName(['kalman estimate of ' sys_est.outputs(2).ports(ii).name]); + ao_out(NstatesOut+ii).setXunits('s'); + ao_out(NstatesOut+ii).setYunits(sys_est.outputs(2).ports(ii).units); + ao_out(NstatesOut+ii).setDescription(... + ['Kalman estimate for ' isysStr, ' : ', sys_est.outputs(2).ports(ii).name, ... + ' ' sys_est.outputs(2).ports(ii).description]); + ao_out(NstatesOut+ii).setT0(tini); + end + + %% construct output matrix object + out = matrix(ao_out); + if callerIsMethod + % do nothing + else + myinfo = getInfo('None'); + out.addHistory(myinfo, pl , ssm_invars(1), inhist ); + end + + %% construct output analysis object + plist_out = plist('process covariance', Qn, 'readout covariance', Rn, ... + 'state covariance', P, 'output covariance', Z, 'Kalman gain', K ); + + %% Set output depending on nargout + if nargout == 1; + varargout = {out}; + elseif nargout == 2; + varargout = {out plist_out}; + elseif nargout == 0; + iplot(ao_out); + else + error('Wrong number of outputs') + end +end + +%-------------------------------------------------------------------------- +% Get Info Object +%-------------------------------------------------------------------------- +function ii = getInfo(varargin) + + if nargin == 1 && strcmpi(varargin{1}, 'None') + sets = {}; + pl = []; + else + sets = {'Default'}; + pl = getDefaultPlist; + end + % Build info object + ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: kalman.m,v 1.51 2011/04/17 21:28:05 adrien Exp $', sets, pl); +end + +%-------------------------------------------------------------------------- +% Get Default Plist +%-------------------------------------------------------------------------- +function pl = getDefaultPlist() + pl = ssm.getInfo('reorganize', 'for kalman').plists; + pl.remove('set'); + + p = param({'covariance', 'The covariance of this noise between input ports for the <i>time-discrete</i> noise model.'}, []); + pl.append(p); + + p = param({'CPSD', 'The one sided cross-psd of the white noise between input ports.'}, []); + pl.append(p); + + p = param({'aos', 'An array of input AOs (experimental stimuli).'}, ao.initObjectWithSize(1,0)); + pl.append(p); + + p = param({'constants', 'Array of DC values for the different corresponding inputs.'}, paramValue.DOUBLE_VALUE(zeros(0,1))); + pl.append(p); + + p = param({'known outputs', 'Array of AOs for the different corresponding outputs (experiment measurements).'}, ao.initObjectWithSize(1,0)); + pl.append(p); + + p = param({'Nsamples', 'The maximum number of samples to simulate (AO length(s) overide this).'}, paramValue.DOUBLE_VALUE(inf)); + pl.append(p); + + p = param({'ssini', 'A cell-array of vectors that give the initial position for simulation.'}, {}); + pl.append(p); + + p = param({'tini', 'The initial filtering time (seconds).'}, paramValue.DOUBLE_VALUE(0) ); + pl.append(p); + + p = param({'displayTime', 'Switch off/on the display'}, paramValue.TRUE_FALSE); + pl.append(p); + + p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE); + pl.append(p); + + p = param({'force complete', 'Force the use of the complete simulation code.'}, paramValue.FALSE_TRUE); + pl.append(p); + + +end +