Mercurial > hg > ltpda
view m-toolbox/classes/@ssm/kalman.m @ 52:daf4eab1a51e database-connection-manager tip
Fix. Default password should be [] not an empty string
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 07 Dec 2011 17:29:47 +0100 |
parents | f0afece42f48 |
children |
line wrap: on
line source
% KALMAN applies Kalman filtering to a discrete ssm with given i/o %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DESCRIPTION: KALMAN applies Kalman filtering to a discrete ssm with % given i/o. % CALL: [mat_out pl_out] = kalman(sys, plist_inputs) % % INPUTS: % - sys, (array of) ssm object % % OUTPUTS: % _ mat_out contains specified returned aos % _ pl_out contains 'lastX', the last state position % % <a href="matlab:utils.helper.displayMethodInfo('ssm', 'kalman')">Parameters Description</a> % % VERSION: $Id: kalman.m,v 1.51 2011/04/17 21:28:05 adrien Exp $ % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = kalman(varargin) %% starting initial checks % use the caller is method flag callerIsMethod = utils.helper.callerIsMethod; % Check if this is a call for parameters if utils.helper.isinfocall(varargin{:}) varargout{1} = getInfo(varargin{3}); return end utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]); % Collect input variable names in_names = cell(size(varargin)); for ii = 1:nargin,in_names{ii} = inputname(ii);end % Collect all SSMs and plists [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names); [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist'); if ~isempty(rest) pl = combine(pl, plist(rest{:})); end pl = combine(pl, getDefaultPlist()); %% retrieve system infos if ~all(sys.isnumerical) error(['error because system ', sys.name, ' is not numerical']); end timestep = sys.timestep; if timestep==0 error('timestep should not be 0 in simulate!!') end if ~callerIsMethod inhist = sys(:).hist; end if pl.isparam('white noise variable names') error('The noise option used must be split between "covariance" and "cpsd". "noise variable names" does not exist anymore!') end %% display time ? displayTime = find(pl, 'displayTime'); %% initial state ssini = find(pl,'ssini'); if isempty(ssini) ssini = cell(sys.Nss,1); for i=1:sys.Nss ssini{i} = zeros(sys.sssizes(i),1); end end ssSizesIni = sys.statesizes; ssini = ssm.blockMatFusion(ssini,ssSizesIni,1); %% modifying system's ordering if find(pl, 'reorganize') sys = sys.reorganize(pl, 'set', 'for kalman', 'internal', 'internal'); end sys_est = sys(1); sys_exp = sys(2); %% getting system's i/o sizes Naos_in = sys_est.inputsizes(1); Nnoise = sys_est.inputsizes(2); Nconstants = sys_est.inputsizes(3); NstatesOut = sys_est.outputsizes(1); NoutputsOut = sys_est.outputsizes(2); Nknown = sys_exp.outputsizes(2); aos_in = find(pl, 'aos'); known_out = find(pl, 'known outputs'); constants_in = find(pl, 'constants'); cov_in = find(pl, 'covariance'); cpsd_in = find(pl, 'CPSD'); noise_in = blkdiag(cov_in, cpsd_in/(timestep*2)); if numel(aos_in)~=Naos_in error(['There are ' num2str(numel(aos_in)) ' input aos and ' num2str(Naos_in) ' corresponding inputs indexed.' ]) elseif numel(known_out)~=Nknown error(['There are ' num2str(numel(known_out)) ' known output aos and ' num2str(Nknown) ' corresponding inputs indexed.' ]) elseif numel(diag(noise_in))~=Nnoise error(['There are ' num2str(numel(noise_in)) ' input noise variances and ' num2str(Naos_in) ' corresponding inputs indexed.' ]) elseif numel(constants_in)~=Nconstants error(['There are ' num2str(numel(constants_in)) ' input constants and ' num2str(Nconstants) ' corresponding inputs indexed.' ]) end [U1,S1,V1] = svd(noise_in.'); %#ok<NASGU> noise_mat = U1*sqrt(S1)/sqrt(timestep*2); A = sys_est.amats{1,1}; Cstates = sys_est.cmats{1,1}; Coutputs = sys_est.cmats{2,1}; Baos = sys_est.bmats{1,1}; Daos = sys_est.dmats{2,1}; Bnoise = sys_est.bmats{1,2}*noise_mat; % Dnoise = sys_est.dmats{1,2}*noise_mat; Bcst = sys_est.bmats{1,3}; Dcst = sys_est.dmats{2,3}; CoutputsK = sys_exp.cmats{2,1}; DaosK = sys_exp.dmats{2,1}; DnoiseK = sys_exp.dmats{2,2}*noise_mat; DcstK = sys_exp.dmats{2,3}; %% getting correct number of samples Nsamples = find(pl, 'Nsamples'); f0 = 1/timestep; for i=1:Naos_in Nsamples = min(Nsamples,length(aos_in(i).y)); try if ~(f0==aos_in(i).fs) str = ['WARNING : ssm frequency is ',num2str(f0),... ' but sampling frequency of ao named ',... aos_in(i).name, ' is ', num2str(aos_in(i).fs) ]; utils.helper.msg(utils.const.msg.MNAME, str); end end % maybe tdata should be retrieved and verified to be equal, rather than this. end for i=1:Nknown Nsamples = min(Nsamples,length(known_out(i).y)); try if ~(f0==known_out(i).fs) str = ['WARNING : ssm frequency is ',num2str(f0),... ' but sampling frequency of ao named ',... aos_in(i).name, ' is ', num2str(aos_in(i).fs) ]; utils.helper.msg(utils.const.msg.MNAME, str); end end % maybe tdata should be retrieved and verified to be equal, rather than this. end if Nsamples == inf % case there is no input! display('warning : no input providing simulation duration is available!!') Nsamples = 0; end %% evaluating Kalman feedback K, innovation gain M, state covariance P, output covariance Z % given Q and R (process and measurement noise covariances) Qn = Bnoise*noise_in*transpose(Bnoise); Qn = (Qn + 1e-10*norm(Qn)*eye(size(Qn))); Rn = DnoiseK*noise_in*transpose(DnoiseK); Rn = Rn + 1e-10*norm(Rn)*eye(size(Rn)); % Nn = Bnoise*noise_in*transpose(Dnoise); P = eye(size(A))*1e20; for i=1:10000 P = A*P*A'+Qn; K = P*CoutputsK'*(CoutputsK*P*CoutputsK'+Rn)^-1; P = (eye(size(A)) - K*CoutputsK)*P; end Z = Coutputs*P*Coutputs' + Rn; %% constant vector constants_vectX = Bcst*constants_in; constants_vectY = Dcst*constants_in; constants_vectYKnown = DcstK*constants_in; %% ao vector aos_vect = zeros(Naos_in, Nsamples); for j = 1:Naos_in aos_vect(j,:) = aos_in(j).y(1:Nsamples).'; end Y_in = zeros(Nknown, Nsamples); for j=1:Nknown Y_in(j,:) = reshape( known_out(j).y(1:Nsamples), 1, [] ).'; end %% rewriting fields to ssm/doSimulate A_kalman = A - K*Coutputs*A; Baos_kalman = [ Baos - K*CoutputsK*Baos - K*DaosK K]; aos_vect_kalman = [aos_vect; Y_in ]; Bcst_kalman = constants_vectX - K*constants_vectYKnown - K*CoutputsK*constants_vectX; Coutputs_kalman = [Cstates ; Coutputs]; Dcst_kalman = [zeros(size(Cstates,1),1) ; constants_vectY]; Daos_kalman = [... zeros(size(Cstates,1), size(Daos,2)) zeros(size(Cstates,1), size(K,2)) ;... Daos zeros(size(Daos,1), size(K,2))]; Cstates_kalman = zeros(0, size(A,2)); Bnoise_kalman = zeros(size(A,1), 0); Dnoise_kalman = zeros(size(Coutputs_kalman,1), 0); %% call to doSimulate doTerminate = false; terminationCond = false; forceComplete = false; [x, y, lastX] = ssm.doSimulate(ssini, Nsamples-1, ... A_kalman, Baos_kalman, Coutputs_kalman, Cstates_kalman, Daos_kalman, Bnoise_kalman, Dnoise_kalman, ... Bcst_kalman, Dcst_kalman, aos_vect_kalman, doTerminate, terminationCond, displayTime, timestep, forceComplete); y = [Coutputs_kalman*lastX y]; %% saving in aos fs = 1/timestep; isysStr = sys.name; tini = find(pl, 'tini'); if isa(tini,'double') tini = time(tini); end ao_out = ao.initObjectWithSize(1, NoutputsOut + NstatesOut); for ii=1:NstatesOut ao_out(ii).setData(tsdata( y(ii,:), fs )); ao_out(ii).setName(['kalman estimate of ' sys_est.outputs(1).ports(ii).name]); ao_out(ii).setXunits('s'); ao_out(ii).setYunits(sys_est.outputs(1).ports(ii).units); ao_out(ii).setDescription(... ['Kalman estimate for ' isysStr, ' : ', sys_est.outputs(1).ports(ii).name,... ' ' sys_est.outputs(1).ports(ii).description]); ao_out(ii).setT0(tini); end for ii=1:NoutputsOut ao_out(NstatesOut+ii).setData(tsdata( y(NstatesOut+ii,:), fs )); ao_out(NstatesOut+ii).setName(['kalman estimate of ' sys_est.outputs(2).ports(ii).name]); ao_out(NstatesOut+ii).setXunits('s'); ao_out(NstatesOut+ii).setYunits(sys_est.outputs(2).ports(ii).units); ao_out(NstatesOut+ii).setDescription(... ['Kalman estimate for ' isysStr, ' : ', sys_est.outputs(2).ports(ii).name, ... ' ' sys_est.outputs(2).ports(ii).description]); ao_out(NstatesOut+ii).setT0(tini); end %% construct output matrix object out = matrix(ao_out); if callerIsMethod % do nothing else myinfo = getInfo('None'); out.addHistory(myinfo, pl , ssm_invars(1), inhist ); end %% construct output analysis object plist_out = plist('process covariance', Qn, 'readout covariance', Rn, ... 'state covariance', P, 'output covariance', Z, 'Kalman gain', K ); %% Set output depending on nargout if nargout == 1; varargout = {out}; elseif nargout == 2; varargout = {out plist_out}; elseif nargout == 0; iplot(ao_out); else error('Wrong number of outputs') end end %-------------------------------------------------------------------------- % Get Info Object %-------------------------------------------------------------------------- function ii = getInfo(varargin) if nargin == 1 && strcmpi(varargin{1}, 'None') sets = {}; pl = []; else sets = {'Default'}; pl = getDefaultPlist; end % Build info object ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: kalman.m,v 1.51 2011/04/17 21:28:05 adrien Exp $', sets, pl); end %-------------------------------------------------------------------------- % Get Default Plist %-------------------------------------------------------------------------- function pl = getDefaultPlist() pl = ssm.getInfo('reorganize', 'for kalman').plists; pl.remove('set'); p = param({'covariance', 'The covariance of this noise between input ports for the <i>time-discrete</i> noise model.'}, []); pl.append(p); p = param({'CPSD', 'The one sided cross-psd of the white noise between input ports.'}, []); pl.append(p); p = param({'aos', 'An array of input AOs (experimental stimuli).'}, ao.initObjectWithSize(1,0)); pl.append(p); p = param({'constants', 'Array of DC values for the different corresponding inputs.'}, paramValue.DOUBLE_VALUE(zeros(0,1))); pl.append(p); p = param({'known outputs', 'Array of AOs for the different corresponding outputs (experiment measurements).'}, ao.initObjectWithSize(1,0)); pl.append(p); p = param({'Nsamples', 'The maximum number of samples to simulate (AO length(s) overide this).'}, paramValue.DOUBLE_VALUE(inf)); pl.append(p); p = param({'ssini', 'A cell-array of vectors that give the initial position for simulation.'}, {}); pl.append(p); p = param({'tini', 'The initial filtering time (seconds).'}, paramValue.DOUBLE_VALUE(0) ); pl.append(p); p = param({'displayTime', 'Switch off/on the display'}, paramValue.TRUE_FALSE); pl.append(p); p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE); pl.append(p); p = param({'force complete', 'Force the use of the complete simulation code.'}, paramValue.FALSE_TRUE); pl.append(p); end