view testing/utp_1.1/utps/ao/utp_ao_diff.m @ 45:a59cdb8aaf31 database-connection-manager

Merge
author Daniele Nicolodi <nicolodi@science.unitn.it>
date Tue, 06 Dec 2011 19:07:22 +0100
parents 409a22968d5e
children
line wrap: on
line source

% UTP_AO_DIFF a set of UTPs for the ao/diff method
%
% M Hewitson 06-08-08
%
% $Id: utp_ao_diff.m,v 1.14 2009/09/20 16:51:33 hewitson Exp $
%

% <MethodDescription>
%
% The diff method of the ao class computes the derivative of the input data
% using different methods.
%
% </MethodDescription>

function results = utp_ao_diff(varargin)

  % Check the inputs
  if nargin == 0

    % Some keywords
    class   = 'ao';
    mthd    = 'diff';

    results = [];
    disp('******************************************************');
    disp(['****  Running UTPs for ' class '/' mthd]);
    disp('******************************************************');

    % Test AOs
    [at1,at2,at3,at4,at5,at6,atvec,atmat] = eval(['get_test_objects_' class]);

    % Exception list for the UTPs:
    [ple1,ple2,ple3,ple4,ple5,ple6] = get_test_ples();

    % Run the tests
    atvec = [at1 at5 at6];
    atmat = [at1 at5 at6; at5 at6 at1];
    pli = plist('method', '3point', 'neval', true);
    
    results = [results utp_01];    % getInfo call
    results = [results utp_02(mthd, atvec, @algo_test_y, pli, ple3)];    % Vector input
    results = [results utp_03(mthd, atmat, @algo_test_y, pli, ple3)];    % Matrix input
    results = [results utp_04(mthd, at1, at5, at6, @algo_test_y, pli, ple3)];    % List input
    results = [results utp_05(mthd, at1, atvec, atmat, @algo_test_y, pli, ple3)];    % Test with mixed input
    results = [results utp_06(mthd, at1, pli, ple2)];    % Test history is working
    results = [results utp_07(mthd, at1, pli, ple2)];    % Test the modify call works
    results = [results utp_09(mthd, at5, at6)];    % Test input data shape == output data shape
    results = [results utp_10(mthd, at1, at5, ple2)];    % Test output of the data
    results = [results utp_11(mthd, at1, ple1)];    % Test plotinfo doesn't disappear    
    results = [results utp_12(mthd, at1, ple1)];    % Test errors are cleared
    
    results = [results utp_13];    % Test with plist: method = 'ORDER2'
    results = [results utp_14];    % Test with plist: method = 'ORDER2SMOOTH'
    results = [results utp_15];    % Test with plist: method = '5POINT'
    
    
    disp('Done.');
    disp('******************************************************');

  elseif nargin == 1 % Check for UTP functions
    if strcmp(varargin{1}, 'isutp')
      results = 1;
    else
      results = 0;
    end
  else
    error('### Incorrect inputs')
  end

  %% Algorithm test for UTP 02,03,04,05
  
  function atest = algo_test_y(in, out, pli)    
    atest = true;
    % 3 point derivative
    x  = in.data.getX;
    dx = diff(x);
    y  = in.data.getY;
    z  = zeros(size(y));
    z(2:end-1) = (y(3:end)-y(1:end-2)) ./ (dx(2:end)+dx(1:end-1));
    z(1)       = (y(2)-y(1)) ./ (dx(1));
    z(end)     = 2*z(end-1)-z(end-2);
    if ~isequal(out.y, z), atest = false; end
  end      
  
  %% UTP_01

  % <TestDescription>
  %
  % Tests that the getInfo call works for this method.
  %
  % </TestDescription>
  function result = utp_01


    % <SyntaxDescription>
    %
    % Test that the getInfo call works for no sets, all sets, and each set
    % individually.
    %
    % </SyntaxDescription>

    try
      % <SyntaxCode>
      % Call for no sets
      io(1) = eval([class '.getInfo(''' mthd ''', ''None'')']);
      % Call for all sets
      io(2) = eval([class '.getInfo(''' mthd ''')']);
      % Call for each set
      for kk=1:numel(io(2).sets)
        io(kk+2) = eval([class '.getInfo(''' mthd ''', ''' io(2).sets{kk} ''')']);
      end
      % </SyntaxCode>
      stest = true;
    catch err
      disp(err.message)
      stest = false;
    end

    % <AlgoDescription>
    %
    % 1) Check that getInfo call returned an minfo object in all cases.
    % 2) Check that all plists have the correct parameters.
    %
    % </AlgoDescription>

    atest = true;
    if stest
      % <AlgoCode>
      % check we have minfo objects
      if isa(io, 'minfo')
        %%% SET 'None'
        if ~isempty(io(1).sets), atest = false; end
        if ~isempty(io(1).plists), atest = false; end
        %%% Check all Sets
        if ~any(strcmpi(io(2).sets, 'Default')), atest = false; end
        if numel(io(2).plists) ~= numel(io(2).sets), atest = false; end
        %%%%%%%%%%   SET 'Default'
        if io(3).plists.nparams ~= 4, atest = false; end
        % Check key
        if ~io(3).plists.isparam('method'), atest = false; end
        if ~io(3).plists.isparam('f0'), atest = false; end
        if ~io(3).plists.isparam('order'), atest = false; end
        if ~io(3).plists.isparam('coeff'), atest = false; end
        % Check default value
        if ~isequal(io(3).plists.find('method'), '2POINT'), atest = false; end
        if ~isequal(io(3).plists.find('f0'), '1/Nsecs'), atest = false; end
        if ~isequal(io(3).plists.find('order'), 'ZERO'), atest = false; end
        if ~isEmptyDouble(io(3).plists.find('coeff')), atest = false; end
        % Check options
        if ~isequal(io(3).plists.getOptionsForParam('method'), {'2POINT', '3POINT', '5POINT', 'ORDER2', 'ORDER2SMOOTH', 'FILTER', 'FPS'}), atest = false; end
        if ~isequal(io(3).plists.getOptionsForParam('f0'), {'1/Nsecs'}), atest = false; end
        if ~isequal(io(3).plists.getOptionsForParam('order'), {'ZERO', 'FIRST', 'SECOND'}), atest = false; end
        if ~isequal(io(3).plists.getOptionsForParam('coeff'), {[]}), atest = false; end
      end
      % </AlgoCode>
    else
      atest = false;
    end

    % Return a result structure
    result = utp_prepare_result(atest, stest, dbstack, mfilename);
  end % END UTP_01

  %% UTP_13

  % <TestDescription>
  %
  % Control the method with a plist.
  %
  % </TestDescription>
  function result = utp_13

    % <SyntaxDescription>
    %
    % Test the computation of derivative using a 2nd order
    %
    % </SyntaxDescription>

    try
      % <SyntaxCode>
      pl   = plist('method', 'ORDER2');
      out  = diff(at5, pl);
      mout = rebuild(out);
      % </SyntaxCode>
      stest = true;
    catch err
      disp(err.message)
      stest = false;
    end

    % <AlgoDescription>
    %
    % 1) Check that the diff method uses the 2nd order derivative.
    % 2) Check that the re-built object is the same object as 'out'.
    %
    % </AlgoDescription>

    atest = true;
    if stest
      % <AlgoCode>
      % Compute derivative using a 2nd order
      x  = at5.data.getX;
      dx = diff(x);
      y  = at5.data.getY;
      z  = zeros(size(y));
      m  = length(y);
      % y'(x1)
      z(1) = (1/dx(1)+1/dx(2))*(y(2)-y(1))+...
        dx(1)/(dx(1)*dx(2)+dx(2)^2)*(y(1)-y(3));
      % y'(xm)
      z(m) = (1/dx(m-2)+1/dx(m-1))*(y(m)-y(m-1))+...
        dx(m-1)/(dx(m-1)*dx(m-2)+dx(m-2)^2)*(y(m-2)-y(m));
      % y'(xi) (i>1 & i<m)
      dx1 = repmat(dx(1:m-2),1,1);
      dx2 = repmat(dx(2:m-1),1,1);
      y1 = y(1:m-2); y2 = y(2:m-1); y3 = y(3:m);
      z(2:m-1) = 1./(dx1.*dx2.*(dx1+dx2)).*...
        (-dx2.^2.*y1+(dx2.^2-dx1.^2).*y2+dx1.^2.*y3);
      % Check the 2nd oder derivative
      if ~isequal(out.y, z), atest = false; end
      % Check the re-built object
      if ~eq(mout, out, ple2), atest = false; end
      % </AlgoCode>
    else
      atest = false;
    end

    % Return a result structure
    result = utp_prepare_result(atest, stest, dbstack, mfilename);
  end % END UTP_13

  %% UTP_14

  % <TestDescription>
  %
  % Control the method with a plist.
  %
  % </TestDescription>
  function result = utp_14

    % <SyntaxDescription>
    %
    % Test the computation of derivative using a 2nd order with a parabolic fit
    %
    % </SyntaxDescription>

    try
      % <SyntaxCode>
      pl  = plist('method', 'ORDER2SMOOTH');
      out = diff(at5, pl);
      mout = rebuild(out);
      % </SyntaxCode>
      stest = true;
    catch err
      disp(err.message)
      stest = false;
    end

    % <AlgoDescription>
    %
    % 1) Check that the diff method uses the 2nd order derivative with a
    %    parabolic fit
    % 2) Check that the re-built object is the same object as 'out'.
    %
    % </AlgoDescription>

    atest = true;
    if stest
      % <AlgoCode>
      % Compute derivative using a 2nd order with a parabolic fit
      x  = at5.data.getX;
      y  = at5.data.getY;
      dx = diff(x);
      m  = length(y);
      h = mean(dx);
      z = zeros(size(y));
      % y'(x1)
      z(1) = sum(y(1:5).*[-54; 13; 40; 27; -26])/70/h;
      % y'(x2)
      z(2) = sum(y(1:5).*[-34; 3; 20; 17; -6])/70/h;
      % y'(x{m-1})
      z(m-1) = sum(y(end-4:end).*[6; -17; -20; -3; 34])/70/h;
      % y'(xm)
      z(m) = sum(y(end-4:end).*[26; -27; -40; -13; 54])/70/h;
      % y'(xi) (i>2 & i<(N-1))
      Dc = [2 1 0 -1 -2];
      tmp = convn(Dc,y)/10/h;
      z(3:m-2) = tmp(5:m);
      % Check the 2nd oder derivative
      if ~isequal(out.y, z), atest = false; end
      % Check the re-built object
      if ~eq(mout, out, ple2), atest = false; end
      % </AlgoCode>
    else
      atest = false;
    end

    % Return a result structure
    result = utp_prepare_result(atest, stest, dbstack, mfilename);
  end % END UTP_14

  %% UTP_15

  % <TestDescription>
  %
  % Control the method with a plist.
  %
  % </TestDescription>
  function result = utp_15

    % <SyntaxDescription>
    %
    % Test the 5 point derivative.
    %
    % </SyntaxDescription>

    try
      % <SyntaxCode>
      pl   = plist('method', '5POINT');
      out  = diff(at5, pl);
      mout = rebuild(out);
      % </SyntaxCode>
      stest = true;
    catch err
      disp(err.message)
      stest = false;
    end

    % <AlgoDescription>
    %
    % 1) Check that the diff method uses the 5 point derivative.
    % 2) Check that the re-built object is the same object as 'out'.
    %
    % </AlgoDescription>

    atest = true;
    if stest
      % <AlgoCode>
      % Compute 5 point derivative
      x  = at5.data.getX;
      dx = diff(x);
      y  = at5.data.getY;
      z  = zeros(size(y));
      z(1)       = (y(2)-y(1)) ./ (dx(1));
      z(2)       = (y(3)-y(1))./(dx(2)+dx(1));
      z(3:end-2) = (-y(5:end) + 8.*y(4:end-1) - 8.*y(2:end-3) + y(1:end-4)) ./ (3.*(x(5:end)-x(1:end-4)));
      z(end-1)   = 2*z(end-2)-z(end-3);
      z(end)     = 2*z(end-1)-z(end-2);
      % Check the 5 point derivative
      if ~isequal(out.y, z), atest = false; end
      % Check the re-built object
      if ~eq(mout, out, ple2), atest = false; end
      % </AlgoCode>
    else
      atest = false;
    end

    % Return a result structure
    result = utp_prepare_result(atest, stest, dbstack, mfilename);
  end % END UTP_15

end