Mercurial > hg > ltpda
view testing/utp_1.1/utps/ao/utp_ao_lscov.m @ 52:daf4eab1a51e database-connection-manager tip
Fix. Default password should be [] not an empty string
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 07 Dec 2011 17:29:47 +0100 |
parents | 409a22968d5e |
children |
line wrap: on
line source
% UTP_AO_LSCOV a set of UTPs for the ao/lscov method % % M Hewitson 06-08-08 % % $Id: utp_ao_lscov.m,v 1.14 2009/12/21 13:46:21 mauro Exp $ % % <MethodDescription> % % The lscov method of the ao class solves a set of linear equations by % performing a linear least-squares fit. % It solves the problem % Y = HX % where X are the parameters, Y the measurements, and H the linear % equations relating the two. % % </MethodDescription> function results = utp_ao_lscov(varargin) % Check the inputs if nargin == 0 % Some keywords class = 'ao'; mthd = 'lscov'; results = []; disp('******************************************************'); disp(['**** Running UTPs for ' class '/' mthd]); disp('******************************************************'); % Test AOs fs = 10; nsecs = 10; x1 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs)); x2 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs)); x3 = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs)); n = ao(plist('tsfcn', 'randn(size(t))', 'fs', fs, 'nsecs', nsecs)); % Exception list for the UTPs: [ple1,ple2,ple3,ple4,ple5,ple6] = get_test_ples(); % Run the tests results = [results utp_01]; % getInfo call results = [results utp_02]; % Vector input results = [results utp_03]; % Matrix input results = [results utp_04]; % List input results = [results utp_05]; % Test history is working results = [results utp_06]; % Test the modify call works results = [results utp_07]; % Test weights usage c = [1 -2 3]; y = c(1)*x1 + c(2)*x2 + c(3)*x3 + n; avec = [x1, x2, x3]; results = [results utp_11(mthd, [avec y], ple1)]; % Test plotinfo doesn't disappear disp('Done.'); disp('******************************************************'); elseif nargin == 1 % Check for UTP functions if strcmp(varargin{1}, 'isutp') results = 1; else results = 0; end else error('### Incorrect inputs') end %% UTP_01 % <TestDescription> % % Tests that the getInfo call works for this method. % % </TestDescription> function result = utp_01 % <SyntaxDescription> % % Test that the getInfo call works for no sets, all sets, and each set % individually. % % </SyntaxDescription> try % <SyntaxCode> % Call for no sets io(1) = eval([class '.getInfo(''' mthd ''', ''None'')']); % Call for all sets io(2) = eval([class '.getInfo(''' mthd ''')']); % Call for each set for kk=1:numel(io(2).sets) io(kk+2) = eval([class '.getInfo(''' mthd ''', ''' io(2).sets{kk} ''')']); end % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that getInfo call returned an minfo object in all cases. % 2) Check that all plists have the correct parameters. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % check we have minfo objects if isa(io, 'minfo') %%% SET 'None' if ~isempty(io(1).sets), atest = false; end if ~isempty(io(1).plists), atest = false; end %%% Check all Sets if ~any(strcmpi(io(2).sets, 'Default')), atest = false; end if numel(io(2).plists) ~= numel(io(2).sets), atest = false; end %%%%%%%%%% SET 'Default' if io(3).plists.nparams ~= 2, atest = false; end % Check key if ~io(3).plists.isparam('weights'), atest = false; end if ~io(3).plists.isparam('cov'), atest = false; end % Check default value if ~isEmptyDouble(io(3).plists.find('weights')), atest = false; end if ~isEmptyDouble(io(3).plists.find('cov')), atest = false; end % Check options if ~isequal(io(3).plists.getOptionsForParam('weights'), {[]}), atest = false; end if ~isequal(io(3).plists.getOptionsForParam('cov'), {[]}), atest = false; end end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_01 %% UTP_02 % <TestDescription> % % Tests that the lscov method works with a vector of AOs as input. % % </TestDescription> function result = utp_02 % <SyntaxDescription> % % Test that the lscov method works for a vector of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> c = [1 -2 3]; y = c(1)*x1 + c(2)*x2 + c(3)*x3 + n; avec = [x1, x2, x3]; out = lscov(avec, y); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check the data type of the output % 2) Check that each output AO contains the correct data. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check we have exactly one pest with 3 parameters if numel(out) ~= 1 || numel(out.y) ~= 3, atest = false; end if ~isa(out, 'pest'), atest = false; end % Check each output against MATLAB lscov C = avec; H = C(:).y; [P,STDX,MSE,COV] = lscov(H,y.y); if ~isequal(out.y, P), atest = false; end if ~isequal(out.dy, STDX), atest = false; end if ~isequal(out.procinfo.find('MSE'), MSE), atest = false; end if ~isequal(out.cov, COV), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_02 %% UTP_03 % <TestDescription> % % Tests that the lscov method works with a matrix of AOs as input. % % </TestDescription> function result = utp_03 % <SyntaxDescription> % % Tests that the lscov method works with a matrix of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> c = [1 -2 3 -1 2 4]; y = c(1)*x1 + c(2)*x2 + c(3)*x3 + c(4)*x1 + c(5)*x2 + c(6)*x3 + n; amat = [x1, x2, x3; x1, x2, x3]; out = lscov(amat, y); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check the data type of the output % 2) Check that each output AO contains the correct data. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check we have exactly one pest with 6 parameters if numel(out) ~= 1 || numel(out.y) ~= 6, atest = false; end if ~isa(out, 'pest'), atest = false; end % Check each output against MATLAB lscov C = amat; H = C(:).y; [P,STDX,MSE,COV] = lscov(H,y.y); if ~isequal(out.y, P), atest = false; end if ~isequal(out.dy, STDX), atest = false; end if ~isequal(out.procinfo.find('MSE'), MSE), atest = false; end if ~isequal(out.cov, COV), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_03 %% UTP_04 % <TestDescription> % % Tests that the lscov method works with a list of AOs as input. % % </TestDescription> function result = utp_04 % <SyntaxDescription> % % Tests that the lscov method works with a list of AOs as input. % % </SyntaxDescription> try % <SyntaxCode> c = [1 -2 3]; y = c(1)*x1 + c(2)*x2 + c(3)*x3 + n; out = lscov(x1, x2, x3, y); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check the data type of the output % 2) Check that each output AO contains the correct data. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check we have exactly one pest with 3 parameters if numel(out) ~= 1 || numel(out.y) ~= 3, atest = false; end if ~isa(out, 'pest'), atest = false; end % Check each output against MATLAB lscov C = [x1, x2, x3]; H = C(:).y; [P,STDX,MSE,COV] = lscov(H,y.y); if ~isequal(out.y, P), atest = false; end if ~isequal(out.dy, STDX), atest = false; end if ~isequal(out.procinfo.find('MSE'), MSE), atest = false; end if ~isequal(out.cov, COV), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_04 %% UTP_05 % <TestDescription> % % Tests that the lscov method properly applies history. % % </TestDescription> function result = utp_05 % <SyntaxDescription> % % Test that the result of applying the lscov method can be processed back. % % </SyntaxDescription> try % <SyntaxCode> c = [1 -2 3]; y = c(1)*x1 + c(2)*x2 + c(3)*x3 + n; out = lscov(x1, x2, x3, y); mout = rebuild(out); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check that the last entry in the history of 'out' corresponds to % 'lscov'. % 2) Check that the re-built object is the same object as the input. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % Check the last step in the history of 'out' if ~strcmp(out.hist.methodInfo.mname, 'lscov'), atest = false; end % The rebuilt object must be the same as 'out' if ~eq(mout, out, ple2), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_05 %% UTP_06 % <TestDescription> % % The lscov method can not be used as a modifer method. % % </TestDescription> function result = utp_06 % <SyntaxDescription> % % The lscov method can not be used as a modifer method. % % </SyntaxDescription> try % <SyntaxCode> c = [1 -2 3]; y = c(1)*x1 + c(2)*x2 + c(3)*x3 + n; x1.lscov(x1, x2, x3, y); stest = false; % </SyntaxCode> catch stest = true; end % <AlgoDescription> % % 1) Nothing to check. % % </AlgoDescription> atest = true; if stest % <AlgoCode> % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_06 %% UTP_07 % <TestDescription> % % Check that the lscov method uses weights for the fit. % % </TestDescription> function result = utp_07 % <SyntaxDescription> % % Check that the lscov method uses weights for the fit. % % </SyntaxDescription> try % <SyntaxCode> c = [1 -2 3]; x = 1:100; w2 = (x.^2 - 100.*x + 2500)/2500; w1(1:100) = 1; y = c(1)*x1 + c(2)*x2 + c(3)*x3 + n; % Setting units y.setYunits('V m'); x1.setYunits('V^-1 Hz'); x2.setYunits('V^-1 Hz'); x3.setYunits('V^-1 Hz'); pl1 = plist('Weights', w1); pl2 = plist('Weights', w2); pl3 = plist('Weights', ao(w2)); out1 = lscov(x1, x2, x3, y); out2 = lscov(x1, x2, x3, y, pl1); out3 = lscov(x1, x2, x3, y, pl2); out4 = lscov(x1, x2, x3, y, pl3); mout1 = rebuild(out1); mout2 = rebuild(out2); mout3 = rebuild(out3); mout4 = rebuild(out4); % </SyntaxCode> stest = true; catch err disp(err.message) stest = false; end % <AlgoDescription> % % 1) Check the output data % 2) Check the yunits % 3) Check that 'out1' and 'out2' have the same data % 4) Check that 'out3' and 'out4' have the same data % 5) Check the re-built objects % % </AlgoDescription> atest = true; if stest % <AlgoCode> C = [x1, x2, x3]; H = C(:).y; % Check the output data with w1 [P,STDX,MSE,COV] = lscov(H,y.y,w1); if ~isequal(out2.y, P), atest = false; end if ~isequal(out2.dy, STDX), atest = false; end if ~isequal(out2.procinfo.find('MSE'), MSE), atest = false; end if ~isequal(out2.cov, COV), atest = false; end for ii = 1:3 if ~eq(out2.yunits(ii), unit('V m V Hz^-1')), atest = false; end end % Check the output data with w2 [P,STDX,MSE,COV] = lscov(H,y.y,w2); if ~isequal(out3.y, P), atest = false; end if ~isequal(out3.dy, STDX), atest = false; end if ~isequal(out3.procinfo.find('MSE'), MSE), atest = false; end if ~isequal(out3.cov, COV), atest = false; end for ii = 1:3 if ~eq(out3.yunits(ii), unit('V m V Hz^-1')), atest = false; end end % Check that 'out1' and 'out2' have the same data if ne(out1, out2, ple3), atest = false; end % Check that 'out3' and 'out4' have the same data if ne(out3, out4, ple3), atest = false; end % Run 'test[1..4].m' and check the result if ne(mout1, out1, ple2), atest = false; end if ne(mout2, out2, ple2), atest = false; end if ne(mout3, out3, ple2), atest = false; end if ne(mout4, out4, ple2), atest = false; end % </AlgoCode> else atest = false; end % Return a result structure result = utp_prepare_result(atest, stest, dbstack, mfilename); end % END UTP_07 end