Mercurial > hg > ltpda
comparison m-toolbox/classes/@ssm/kalman.m @ 0:f0afece42f48
Import.
author | Daniele Nicolodi <nicolodi@science.unitn.it> |
---|---|
date | Wed, 23 Nov 2011 19:22:13 +0100 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:f0afece42f48 |
---|---|
1 % KALMAN applies Kalman filtering to a discrete ssm with given i/o | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 % | |
4 % DESCRIPTION: KALMAN applies Kalman filtering to a discrete ssm with | |
5 % given i/o. | |
6 % CALL: [mat_out pl_out] = kalman(sys, plist_inputs) | |
7 % | |
8 % INPUTS: | |
9 % - sys, (array of) ssm object | |
10 % | |
11 % OUTPUTS: | |
12 % _ mat_out contains specified returned aos | |
13 % _ pl_out contains 'lastX', the last state position | |
14 % | |
15 % <a href="matlab:utils.helper.displayMethodInfo('ssm', 'kalman')">Parameters Description</a> | |
16 % | |
17 % VERSION: $Id: kalman.m,v 1.51 2011/04/17 21:28:05 adrien Exp $ | |
18 % | |
19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
20 | |
21 function varargout = kalman(varargin) | |
22 | |
23 %% starting initial checks | |
24 | |
25 % use the caller is method flag | |
26 callerIsMethod = utils.helper.callerIsMethod; | |
27 | |
28 % Check if this is a call for parameters | |
29 if utils.helper.isinfocall(varargin{:}) | |
30 varargout{1} = getInfo(varargin{3}); | |
31 return | |
32 end | |
33 | |
34 utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]); | |
35 | |
36 % Collect input variable names | |
37 in_names = cell(size(varargin)); | |
38 for ii = 1:nargin,in_names{ii} = inputname(ii);end | |
39 | |
40 % Collect all SSMs and plists | |
41 [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names); | |
42 [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist'); | |
43 if ~isempty(rest) | |
44 pl = combine(pl, plist(rest{:})); | |
45 end | |
46 pl = combine(pl, getDefaultPlist()); | |
47 | |
48 %% retrieve system infos | |
49 if ~all(sys.isnumerical) | |
50 error(['error because system ', sys.name, ' is not numerical']); | |
51 end | |
52 timestep = sys.timestep; | |
53 if timestep==0 | |
54 error('timestep should not be 0 in simulate!!') | |
55 end | |
56 if ~callerIsMethod | |
57 inhist = sys(:).hist; | |
58 end | |
59 if pl.isparam('white noise variable names') | |
60 error('The noise option used must be split between "covariance" and "cpsd". "noise variable names" does not exist anymore!') | |
61 end | |
62 | |
63 %% display time ? | |
64 displayTime = find(pl, 'displayTime'); | |
65 | |
66 %% initial state | |
67 ssini = find(pl,'ssini'); | |
68 if isempty(ssini) | |
69 ssini = cell(sys.Nss,1); | |
70 for i=1:sys.Nss | |
71 ssini{i} = zeros(sys.sssizes(i),1); | |
72 end | |
73 end | |
74 ssSizesIni = sys.statesizes; | |
75 ssini = ssm.blockMatFusion(ssini,ssSizesIni,1); | |
76 | |
77 %% modifying system's ordering | |
78 if find(pl, 'reorganize') | |
79 sys = sys.reorganize(pl, 'set', 'for kalman', 'internal', 'internal'); | |
80 end | |
81 sys_est = sys(1); | |
82 sys_exp = sys(2); | |
83 | |
84 %% getting system's i/o sizes | |
85 Naos_in = sys_est.inputsizes(1); | |
86 Nnoise = sys_est.inputsizes(2); | |
87 Nconstants = sys_est.inputsizes(3); | |
88 NstatesOut = sys_est.outputsizes(1); | |
89 NoutputsOut = sys_est.outputsizes(2); | |
90 Nknown = sys_exp.outputsizes(2); | |
91 | |
92 aos_in = find(pl, 'aos'); | |
93 known_out = find(pl, 'known outputs'); | |
94 constants_in = find(pl, 'constants'); | |
95 cov_in = find(pl, 'covariance'); | |
96 cpsd_in = find(pl, 'CPSD'); | |
97 noise_in = blkdiag(cov_in, cpsd_in/(timestep*2)); | |
98 | |
99 if numel(aos_in)~=Naos_in | |
100 error(['There are ' num2str(numel(aos_in)) ' input aos and ' num2str(Naos_in) ' corresponding inputs indexed.' ]) | |
101 elseif numel(known_out)~=Nknown | |
102 error(['There are ' num2str(numel(known_out)) ' known output aos and ' num2str(Nknown) ' corresponding inputs indexed.' ]) | |
103 elseif numel(diag(noise_in))~=Nnoise | |
104 error(['There are ' num2str(numel(noise_in)) ' input noise variances and ' num2str(Naos_in) ' corresponding inputs indexed.' ]) | |
105 elseif numel(constants_in)~=Nconstants | |
106 error(['There are ' num2str(numel(constants_in)) ' input constants and ' num2str(Nconstants) ' corresponding inputs indexed.' ]) | |
107 end | |
108 [U1,S1,V1] = svd(noise_in.'); %#ok<NASGU> | |
109 noise_mat = U1*sqrt(S1)/sqrt(timestep*2); | |
110 | |
111 A = sys_est.amats{1,1}; | |
112 Cstates = sys_est.cmats{1,1}; | |
113 Coutputs = sys_est.cmats{2,1}; | |
114 Baos = sys_est.bmats{1,1}; | |
115 Daos = sys_est.dmats{2,1}; | |
116 Bnoise = sys_est.bmats{1,2}*noise_mat; | |
117 % Dnoise = sys_est.dmats{1,2}*noise_mat; | |
118 Bcst = sys_est.bmats{1,3}; | |
119 Dcst = sys_est.dmats{2,3}; | |
120 | |
121 CoutputsK = sys_exp.cmats{2,1}; | |
122 DaosK = sys_exp.dmats{2,1}; | |
123 DnoiseK = sys_exp.dmats{2,2}*noise_mat; | |
124 DcstK = sys_exp.dmats{2,3}; | |
125 | |
126 %% getting correct number of samples | |
127 Nsamples = find(pl, 'Nsamples'); | |
128 f0 = 1/timestep; | |
129 for i=1:Naos_in | |
130 Nsamples = min(Nsamples,length(aos_in(i).y)); | |
131 try | |
132 if ~(f0==aos_in(i).fs) | |
133 str = ['WARNING : ssm frequency is ',num2str(f0),... | |
134 ' but sampling frequency of ao named ',... | |
135 aos_in(i).name, ' is ', num2str(aos_in(i).fs) ]; | |
136 utils.helper.msg(utils.const.msg.MNAME, str); | |
137 end | |
138 end | |
139 % maybe tdata should be retrieved and verified to be equal, rather than this. | |
140 end | |
141 for i=1:Nknown | |
142 Nsamples = min(Nsamples,length(known_out(i).y)); | |
143 try | |
144 if ~(f0==known_out(i).fs) | |
145 str = ['WARNING : ssm frequency is ',num2str(f0),... | |
146 ' but sampling frequency of ao named ',... | |
147 aos_in(i).name, ' is ', num2str(aos_in(i).fs) ]; | |
148 utils.helper.msg(utils.const.msg.MNAME, str); | |
149 end | |
150 end | |
151 % maybe tdata should be retrieved and verified to be equal, rather than this. | |
152 end | |
153 if Nsamples == inf % case there is no input! | |
154 display('warning : no input providing simulation duration is available!!') | |
155 Nsamples = 0; | |
156 end | |
157 | |
158 %% evaluating Kalman feedback K, innovation gain M, state covariance P, output covariance Z | |
159 % given Q and R (process and measurement noise covariances) | |
160 Qn = Bnoise*noise_in*transpose(Bnoise); | |
161 Qn = (Qn + 1e-10*norm(Qn)*eye(size(Qn))); | |
162 Rn = DnoiseK*noise_in*transpose(DnoiseK); | |
163 Rn = Rn + 1e-10*norm(Rn)*eye(size(Rn)); | |
164 % Nn = Bnoise*noise_in*transpose(Dnoise); | |
165 P = eye(size(A))*1e20; | |
166 for i=1:10000 | |
167 P = A*P*A'+Qn; | |
168 K = P*CoutputsK'*(CoutputsK*P*CoutputsK'+Rn)^-1; | |
169 P = (eye(size(A)) - K*CoutputsK)*P; | |
170 end | |
171 Z = Coutputs*P*Coutputs' + Rn; | |
172 | |
173 %% constant vector | |
174 constants_vectX = Bcst*constants_in; | |
175 constants_vectY = Dcst*constants_in; | |
176 constants_vectYKnown = DcstK*constants_in; | |
177 | |
178 %% ao vector | |
179 aos_vect = zeros(Naos_in, Nsamples); | |
180 for j = 1:Naos_in | |
181 aos_vect(j,:) = aos_in(j).y(1:Nsamples).'; | |
182 end | |
183 Y_in = zeros(Nknown, Nsamples); | |
184 for j=1:Nknown | |
185 Y_in(j,:) = reshape( known_out(j).y(1:Nsamples), 1, [] ).'; | |
186 end | |
187 | |
188 %% rewriting fields to ssm/doSimulate | |
189 | |
190 A_kalman = A - K*Coutputs*A; | |
191 Baos_kalman = [ Baos - K*CoutputsK*Baos - K*DaosK K]; | |
192 aos_vect_kalman = [aos_vect; Y_in ]; | |
193 Bcst_kalman = constants_vectX - K*constants_vectYKnown - K*CoutputsK*constants_vectX; | |
194 Coutputs_kalman = [Cstates ; Coutputs]; | |
195 Dcst_kalman = [zeros(size(Cstates,1),1) ; constants_vectY]; | |
196 Daos_kalman = [... | |
197 zeros(size(Cstates,1), size(Daos,2)) zeros(size(Cstates,1), size(K,2)) ;... | |
198 Daos zeros(size(Daos,1), size(K,2))]; | |
199 Cstates_kalman = zeros(0, size(A,2)); | |
200 Bnoise_kalman = zeros(size(A,1), 0); | |
201 Dnoise_kalman = zeros(size(Coutputs_kalman,1), 0); | |
202 | |
203 %% call to doSimulate | |
204 doTerminate = false; | |
205 terminationCond = false; | |
206 forceComplete = false; | |
207 | |
208 [x, y, lastX] = ssm.doSimulate(ssini, Nsamples-1, ... | |
209 A_kalman, Baos_kalman, Coutputs_kalman, Cstates_kalman, Daos_kalman, Bnoise_kalman, Dnoise_kalman, ... | |
210 Bcst_kalman, Dcst_kalman, aos_vect_kalman, doTerminate, terminationCond, displayTime, timestep, forceComplete); | |
211 | |
212 y = [Coutputs_kalman*lastX y]; | |
213 | |
214 %% saving in aos | |
215 fs = 1/timestep; | |
216 isysStr = sys.name; | |
217 tini = find(pl, 'tini'); | |
218 if isa(tini,'double') | |
219 tini = time(tini); | |
220 end | |
221 | |
222 ao_out = ao.initObjectWithSize(1, NoutputsOut + NstatesOut); | |
223 for ii=1:NstatesOut | |
224 ao_out(ii).setData(tsdata( y(ii,:), fs )); | |
225 ao_out(ii).setName(['kalman estimate of ' sys_est.outputs(1).ports(ii).name]); | |
226 ao_out(ii).setXunits('s'); | |
227 ao_out(ii).setYunits(sys_est.outputs(1).ports(ii).units); | |
228 ao_out(ii).setDescription(... | |
229 ['Kalman estimate for ' isysStr, ' : ', sys_est.outputs(1).ports(ii).name,... | |
230 ' ' sys_est.outputs(1).ports(ii).description]); | |
231 ao_out(ii).setT0(tini); | |
232 end | |
233 for ii=1:NoutputsOut | |
234 ao_out(NstatesOut+ii).setData(tsdata( y(NstatesOut+ii,:), fs )); | |
235 ao_out(NstatesOut+ii).setName(['kalman estimate of ' sys_est.outputs(2).ports(ii).name]); | |
236 ao_out(NstatesOut+ii).setXunits('s'); | |
237 ao_out(NstatesOut+ii).setYunits(sys_est.outputs(2).ports(ii).units); | |
238 ao_out(NstatesOut+ii).setDescription(... | |
239 ['Kalman estimate for ' isysStr, ' : ', sys_est.outputs(2).ports(ii).name, ... | |
240 ' ' sys_est.outputs(2).ports(ii).description]); | |
241 ao_out(NstatesOut+ii).setT0(tini); | |
242 end | |
243 | |
244 %% construct output matrix object | |
245 out = matrix(ao_out); | |
246 if callerIsMethod | |
247 % do nothing | |
248 else | |
249 myinfo = getInfo('None'); | |
250 out.addHistory(myinfo, pl , ssm_invars(1), inhist ); | |
251 end | |
252 | |
253 %% construct output analysis object | |
254 plist_out = plist('process covariance', Qn, 'readout covariance', Rn, ... | |
255 'state covariance', P, 'output covariance', Z, 'Kalman gain', K ); | |
256 | |
257 %% Set output depending on nargout | |
258 if nargout == 1; | |
259 varargout = {out}; | |
260 elseif nargout == 2; | |
261 varargout = {out plist_out}; | |
262 elseif nargout == 0; | |
263 iplot(ao_out); | |
264 else | |
265 error('Wrong number of outputs') | |
266 end | |
267 end | |
268 | |
269 %-------------------------------------------------------------------------- | |
270 % Get Info Object | |
271 %-------------------------------------------------------------------------- | |
272 function ii = getInfo(varargin) | |
273 | |
274 if nargin == 1 && strcmpi(varargin{1}, 'None') | |
275 sets = {}; | |
276 pl = []; | |
277 else | |
278 sets = {'Default'}; | |
279 pl = getDefaultPlist; | |
280 end | |
281 % Build info object | |
282 ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: kalman.m,v 1.51 2011/04/17 21:28:05 adrien Exp $', sets, pl); | |
283 end | |
284 | |
285 %-------------------------------------------------------------------------- | |
286 % Get Default Plist | |
287 %-------------------------------------------------------------------------- | |
288 function pl = getDefaultPlist() | |
289 pl = ssm.getInfo('reorganize', 'for kalman').plists; | |
290 pl.remove('set'); | |
291 | |
292 p = param({'covariance', 'The covariance of this noise between input ports for the <i>time-discrete</i> noise model.'}, []); | |
293 pl.append(p); | |
294 | |
295 p = param({'CPSD', 'The one sided cross-psd of the white noise between input ports.'}, []); | |
296 pl.append(p); | |
297 | |
298 p = param({'aos', 'An array of input AOs (experimental stimuli).'}, ao.initObjectWithSize(1,0)); | |
299 pl.append(p); | |
300 | |
301 p = param({'constants', 'Array of DC values for the different corresponding inputs.'}, paramValue.DOUBLE_VALUE(zeros(0,1))); | |
302 pl.append(p); | |
303 | |
304 p = param({'known outputs', 'Array of AOs for the different corresponding outputs (experiment measurements).'}, ao.initObjectWithSize(1,0)); | |
305 pl.append(p); | |
306 | |
307 p = param({'Nsamples', 'The maximum number of samples to simulate (AO length(s) overide this).'}, paramValue.DOUBLE_VALUE(inf)); | |
308 pl.append(p); | |
309 | |
310 p = param({'ssini', 'A cell-array of vectors that give the initial position for simulation.'}, {}); | |
311 pl.append(p); | |
312 | |
313 p = param({'tini', 'The initial filtering time (seconds).'}, paramValue.DOUBLE_VALUE(0) ); | |
314 pl.append(p); | |
315 | |
316 p = param({'displayTime', 'Switch off/on the display'}, paramValue.TRUE_FALSE); | |
317 pl.append(p); | |
318 | |
319 p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE); | |
320 pl.append(p); | |
321 | |
322 p = param({'force complete', 'Force the use of the complete simulation code.'}, paramValue.FALSE_TRUE); | |
323 pl.append(p); | |
324 | |
325 | |
326 end | |
327 |