Import.
line source
+ − % KALMAN applies Kalman filtering to a discrete ssm with given i/o
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ − %
+ − % DESCRIPTION: KALMAN applies Kalman filtering to a discrete ssm with
+ − % given i/o.
+ − % CALL: [mat_out pl_out] = kalman(sys, plist_inputs)
+ − %
+ − % INPUTS:
+ − % - sys, (array of) ssm object
+ − %
+ − % OUTPUTS:
+ − % _ mat_out contains specified returned aos
+ − % _ pl_out contains 'lastX', the last state position
+ − %
+ − % <a href="matlab:utils.helper.displayMethodInfo('ssm', 'kalman')">Parameters Description</a>
+ − %
+ − % VERSION: $Id: kalman.m,v 1.51 2011/04/17 21:28:05 adrien Exp $
+ − %
+ − %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+ −
+ − function varargout = kalman(varargin)
+ −
+ − %% starting initial checks
+ −
+ − % use the caller is method flag
+ − callerIsMethod = utils.helper.callerIsMethod;
+ −
+ − % Check if this is a call for parameters
+ − if utils.helper.isinfocall(varargin{:})
+ − varargout{1} = getInfo(varargin{3});
+ − return
+ − end
+ −
+ − utils.helper.msg(utils.const.msg.MNAME, ['running ', mfilename]);
+ −
+ − % Collect input variable names
+ − in_names = cell(size(varargin));
+ − for ii = 1:nargin,in_names{ii} = inputname(ii);end
+ −
+ − % Collect all SSMs and plists
+ − [sys, ssm_invars, rest] = utils.helper.collect_objects(varargin(:), 'ssm', in_names);
+ − [pl, invars2, rest] = utils.helper.collect_objects(rest(:), 'plist');
+ − if ~isempty(rest)
+ − pl = combine(pl, plist(rest{:}));
+ − end
+ − pl = combine(pl, getDefaultPlist());
+ −
+ − %% retrieve system infos
+ − if ~all(sys.isnumerical)
+ − error(['error because system ', sys.name, ' is not numerical']);
+ − end
+ − timestep = sys.timestep;
+ − if timestep==0
+ − error('timestep should not be 0 in simulate!!')
+ − end
+ − if ~callerIsMethod
+ − inhist = sys(:).hist;
+ − end
+ − if pl.isparam('white noise variable names')
+ − error('The noise option used must be split between "covariance" and "cpsd". "noise variable names" does not exist anymore!')
+ − end
+ −
+ − %% display time ?
+ − displayTime = find(pl, 'displayTime');
+ −
+ − %% initial state
+ − ssini = find(pl,'ssini');
+ − if isempty(ssini)
+ − ssini = cell(sys.Nss,1);
+ − for i=1:sys.Nss
+ − ssini{i} = zeros(sys.sssizes(i),1);
+ − end
+ − end
+ − ssSizesIni = sys.statesizes;
+ − ssini = ssm.blockMatFusion(ssini,ssSizesIni,1);
+ −
+ − %% modifying system's ordering
+ − if find(pl, 'reorganize')
+ − sys = sys.reorganize(pl, 'set', 'for kalman', 'internal', 'internal');
+ − end
+ − sys_est = sys(1);
+ − sys_exp = sys(2);
+ −
+ − %% getting system's i/o sizes
+ − Naos_in = sys_est.inputsizes(1);
+ − Nnoise = sys_est.inputsizes(2);
+ − Nconstants = sys_est.inputsizes(3);
+ − NstatesOut = sys_est.outputsizes(1);
+ − NoutputsOut = sys_est.outputsizes(2);
+ − Nknown = sys_exp.outputsizes(2);
+ −
+ − aos_in = find(pl, 'aos');
+ − known_out = find(pl, 'known outputs');
+ − constants_in = find(pl, 'constants');
+ − cov_in = find(pl, 'covariance');
+ − cpsd_in = find(pl, 'CPSD');
+ − noise_in = blkdiag(cov_in, cpsd_in/(timestep*2));
+ −
+ − if numel(aos_in)~=Naos_in
+ − error(['There are ' num2str(numel(aos_in)) ' input aos and ' num2str(Naos_in) ' corresponding inputs indexed.' ])
+ − elseif numel(known_out)~=Nknown
+ − error(['There are ' num2str(numel(known_out)) ' known output aos and ' num2str(Nknown) ' corresponding inputs indexed.' ])
+ − elseif numel(diag(noise_in))~=Nnoise
+ − error(['There are ' num2str(numel(noise_in)) ' input noise variances and ' num2str(Naos_in) ' corresponding inputs indexed.' ])
+ − elseif numel(constants_in)~=Nconstants
+ − error(['There are ' num2str(numel(constants_in)) ' input constants and ' num2str(Nconstants) ' corresponding inputs indexed.' ])
+ − end
+ − [U1,S1,V1] = svd(noise_in.'); %#ok<NASGU>
+ − noise_mat = U1*sqrt(S1)/sqrt(timestep*2);
+ −
+ − A = sys_est.amats{1,1};
+ − Cstates = sys_est.cmats{1,1};
+ − Coutputs = sys_est.cmats{2,1};
+ − Baos = sys_est.bmats{1,1};
+ − Daos = sys_est.dmats{2,1};
+ − Bnoise = sys_est.bmats{1,2}*noise_mat;
+ − % Dnoise = sys_est.dmats{1,2}*noise_mat;
+ − Bcst = sys_est.bmats{1,3};
+ − Dcst = sys_est.dmats{2,3};
+ −
+ − CoutputsK = sys_exp.cmats{2,1};
+ − DaosK = sys_exp.dmats{2,1};
+ − DnoiseK = sys_exp.dmats{2,2}*noise_mat;
+ − DcstK = sys_exp.dmats{2,3};
+ −
+ − %% getting correct number of samples
+ − Nsamples = find(pl, 'Nsamples');
+ − f0 = 1/timestep;
+ − for i=1:Naos_in
+ − Nsamples = min(Nsamples,length(aos_in(i).y));
+ − try
+ − if ~(f0==aos_in(i).fs)
+ − str = ['WARNING : ssm frequency is ',num2str(f0),...
+ − ' but sampling frequency of ao named ',...
+ − aos_in(i).name, ' is ', num2str(aos_in(i).fs) ];
+ − utils.helper.msg(utils.const.msg.MNAME, str);
+ − end
+ − end
+ − % maybe tdata should be retrieved and verified to be equal, rather than this.
+ − end
+ − for i=1:Nknown
+ − Nsamples = min(Nsamples,length(known_out(i).y));
+ − try
+ − if ~(f0==known_out(i).fs)
+ − str = ['WARNING : ssm frequency is ',num2str(f0),...
+ − ' but sampling frequency of ao named ',...
+ − aos_in(i).name, ' is ', num2str(aos_in(i).fs) ];
+ − utils.helper.msg(utils.const.msg.MNAME, str);
+ − end
+ − end
+ − % maybe tdata should be retrieved and verified to be equal, rather than this.
+ − end
+ − if Nsamples == inf % case there is no input!
+ − display('warning : no input providing simulation duration is available!!')
+ − Nsamples = 0;
+ − end
+ −
+ − %% evaluating Kalman feedback K, innovation gain M, state covariance P, output covariance Z
+ − % given Q and R (process and measurement noise covariances)
+ − Qn = Bnoise*noise_in*transpose(Bnoise);
+ − Qn = (Qn + 1e-10*norm(Qn)*eye(size(Qn)));
+ − Rn = DnoiseK*noise_in*transpose(DnoiseK);
+ − Rn = Rn + 1e-10*norm(Rn)*eye(size(Rn));
+ − % Nn = Bnoise*noise_in*transpose(Dnoise);
+ − P = eye(size(A))*1e20;
+ − for i=1:10000
+ − P = A*P*A'+Qn;
+ − K = P*CoutputsK'*(CoutputsK*P*CoutputsK'+Rn)^-1;
+ − P = (eye(size(A)) - K*CoutputsK)*P;
+ − end
+ − Z = Coutputs*P*Coutputs' + Rn;
+ −
+ − %% constant vector
+ − constants_vectX = Bcst*constants_in;
+ − constants_vectY = Dcst*constants_in;
+ − constants_vectYKnown = DcstK*constants_in;
+ −
+ − %% ao vector
+ − aos_vect = zeros(Naos_in, Nsamples);
+ − for j = 1:Naos_in
+ − aos_vect(j,:) = aos_in(j).y(1:Nsamples).';
+ − end
+ − Y_in = zeros(Nknown, Nsamples);
+ − for j=1:Nknown
+ − Y_in(j,:) = reshape( known_out(j).y(1:Nsamples), 1, [] ).';
+ − end
+ −
+ − %% rewriting fields to ssm/doSimulate
+ −
+ − A_kalman = A - K*Coutputs*A;
+ − Baos_kalman = [ Baos - K*CoutputsK*Baos - K*DaosK K];
+ − aos_vect_kalman = [aos_vect; Y_in ];
+ − Bcst_kalman = constants_vectX - K*constants_vectYKnown - K*CoutputsK*constants_vectX;
+ − Coutputs_kalman = [Cstates ; Coutputs];
+ − Dcst_kalman = [zeros(size(Cstates,1),1) ; constants_vectY];
+ − Daos_kalman = [...
+ − zeros(size(Cstates,1), size(Daos,2)) zeros(size(Cstates,1), size(K,2)) ;...
+ − Daos zeros(size(Daos,1), size(K,2))];
+ − Cstates_kalman = zeros(0, size(A,2));
+ − Bnoise_kalman = zeros(size(A,1), 0);
+ − Dnoise_kalman = zeros(size(Coutputs_kalman,1), 0);
+ −
+ − %% call to doSimulate
+ − doTerminate = false;
+ − terminationCond = false;
+ − forceComplete = false;
+ −
+ − [x, y, lastX] = ssm.doSimulate(ssini, Nsamples-1, ...
+ − A_kalman, Baos_kalman, Coutputs_kalman, Cstates_kalman, Daos_kalman, Bnoise_kalman, Dnoise_kalman, ...
+ − Bcst_kalman, Dcst_kalman, aos_vect_kalman, doTerminate, terminationCond, displayTime, timestep, forceComplete);
+ −
+ − y = [Coutputs_kalman*lastX y];
+ −
+ − %% saving in aos
+ − fs = 1/timestep;
+ − isysStr = sys.name;
+ − tini = find(pl, 'tini');
+ − if isa(tini,'double')
+ − tini = time(tini);
+ − end
+ −
+ − ao_out = ao.initObjectWithSize(1, NoutputsOut + NstatesOut);
+ − for ii=1:NstatesOut
+ − ao_out(ii).setData(tsdata( y(ii,:), fs ));
+ − ao_out(ii).setName(['kalman estimate of ' sys_est.outputs(1).ports(ii).name]);
+ − ao_out(ii).setXunits('s');
+ − ao_out(ii).setYunits(sys_est.outputs(1).ports(ii).units);
+ − ao_out(ii).setDescription(...
+ − ['Kalman estimate for ' isysStr, ' : ', sys_est.outputs(1).ports(ii).name,...
+ − ' ' sys_est.outputs(1).ports(ii).description]);
+ − ao_out(ii).setT0(tini);
+ − end
+ − for ii=1:NoutputsOut
+ − ao_out(NstatesOut+ii).setData(tsdata( y(NstatesOut+ii,:), fs ));
+ − ao_out(NstatesOut+ii).setName(['kalman estimate of ' sys_est.outputs(2).ports(ii).name]);
+ − ao_out(NstatesOut+ii).setXunits('s');
+ − ao_out(NstatesOut+ii).setYunits(sys_est.outputs(2).ports(ii).units);
+ − ao_out(NstatesOut+ii).setDescription(...
+ − ['Kalman estimate for ' isysStr, ' : ', sys_est.outputs(2).ports(ii).name, ...
+ − ' ' sys_est.outputs(2).ports(ii).description]);
+ − ao_out(NstatesOut+ii).setT0(tini);
+ − end
+ −
+ − %% construct output matrix object
+ − out = matrix(ao_out);
+ − if callerIsMethod
+ − % do nothing
+ − else
+ − myinfo = getInfo('None');
+ − out.addHistory(myinfo, pl , ssm_invars(1), inhist );
+ − end
+ −
+ − %% construct output analysis object
+ − plist_out = plist('process covariance', Qn, 'readout covariance', Rn, ...
+ − 'state covariance', P, 'output covariance', Z, 'Kalman gain', K );
+ −
+ − %% Set output depending on nargout
+ − if nargout == 1;
+ − varargout = {out};
+ − elseif nargout == 2;
+ − varargout = {out plist_out};
+ − elseif nargout == 0;
+ − iplot(ao_out);
+ − else
+ − error('Wrong number of outputs')
+ − end
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Info Object
+ − %--------------------------------------------------------------------------
+ − function ii = getInfo(varargin)
+ −
+ − if nargin == 1 && strcmpi(varargin{1}, 'None')
+ − sets = {};
+ − pl = [];
+ − else
+ − sets = {'Default'};
+ − pl = getDefaultPlist;
+ − end
+ − % Build info object
+ − ii = minfo(mfilename, 'ssm', 'ltpda', utils.const.categories.op, '$Id: kalman.m,v 1.51 2011/04/17 21:28:05 adrien Exp $', sets, pl);
+ − end
+ −
+ − %--------------------------------------------------------------------------
+ − % Get Default Plist
+ − %--------------------------------------------------------------------------
+ − function pl = getDefaultPlist()
+ − pl = ssm.getInfo('reorganize', 'for kalman').plists;
+ − pl.remove('set');
+ −
+ − p = param({'covariance', 'The covariance of this noise between input ports for the <i>time-discrete</i> noise model.'}, []);
+ − pl.append(p);
+ −
+ − p = param({'CPSD', 'The one sided cross-psd of the white noise between input ports.'}, []);
+ − pl.append(p);
+ −
+ − p = param({'aos', 'An array of input AOs (experimental stimuli).'}, ao.initObjectWithSize(1,0));
+ − pl.append(p);
+ −
+ − p = param({'constants', 'Array of DC values for the different corresponding inputs.'}, paramValue.DOUBLE_VALUE(zeros(0,1)));
+ − pl.append(p);
+ −
+ − p = param({'known outputs', 'Array of AOs for the different corresponding outputs (experiment measurements).'}, ao.initObjectWithSize(1,0));
+ − pl.append(p);
+ −
+ − p = param({'Nsamples', 'The maximum number of samples to simulate (AO length(s) overide this).'}, paramValue.DOUBLE_VALUE(inf));
+ − pl.append(p);
+ −
+ − p = param({'ssini', 'A cell-array of vectors that give the initial position for simulation.'}, {});
+ − pl.append(p);
+ −
+ − p = param({'tini', 'The initial filtering time (seconds).'}, paramValue.DOUBLE_VALUE(0) );
+ − pl.append(p);
+ −
+ − p = param({'displayTime', 'Switch off/on the display'}, paramValue.TRUE_FALSE);
+ − pl.append(p);
+ −
+ − p = param({'reorganize', 'When set to 0, this means the ssm does not need be modified to match the requested i/o. Faster but dangerous!'}, paramValue.TRUE_FALSE);
+ − pl.append(p);
+ −
+ − p = param({'force complete', 'Force the use of the complete simulation code.'}, paramValue.FALSE_TRUE);
+ − pl.append(p);
+ −
+ −
+ − end
+ −